(Notations, non-standard concepts, and definitions used commonly in these investigations are detailed in this post.)

The Unexplained Intellect: Complexity, Time, and the Metaphysics of Embodied Thought

Christopher Mole is an associate professor of philosophy at the University of British Columbia, Vancouver. He is the author of Attention is Cognitive Unison: An Essay in Philosophical Psychology (OUP, 2011), and The Unexplained Intellect: Complexity, Time, and the Metaphysics of Embodied Thought (Routledge, 2016).

In his preface to The Unexplained Intellect, Mole emphasises that his book is an attempt to provide arguments for (amongst others) the three theses that:

(i) “Intelligence might become explicable if we treat intelligence thought as if it were some sort of computation”;

(ii) “The importance of the rapport between an organism and its environment must \ldots be understood from a broadly computational perspective”;

(iii) “\ldots our difficulties in accounting for our psychological orientation with respect to time are indications of the need to shift our philosophical focus away from mental states—which are altogether too static—and towards a theory of the mind in which it is dynamic mental entities that are taken to be metaphysically foundational”.

The Brains blog

Mole explains at length his main claims in The Unexplained Intellect—and the cause that those claims serve—in a lucid and penetrating, VI-part, series of invited posts in The Brains blog (a leading forum for work in the philosophy and science of mind that was founded in 2005 by Gualtiero Piccinini, and has been administered by John Schwenkler since late 2011).

In these posts, Mole seeks to make the following points.

I: The Unexplained Intellect: The mind is not a hoard of sentences

We do not currently have a satisfactory account of how minds could be had by material creatures. If such an account is to be given then every mental phenomenon will need to find a place within it. Many will be accounted for by relating them to other things that are mental, but there must come a point at which we break out of the mental domain, and account for some things that are mental by reference to some that are not. It is unclear where this break out point will be. In that sense it is unclear which mental entities are, metaphysically speaking, the most fundamental.

At some point in the twentieth century, philosophers fell into the habit of writing as if the most fundamental things in the mental domain are mental states (where these are thought of as states having objective features of the world as their truth-evaluable contents). This led to a picture in which the mind was regarded as something like a hoard of sentences. The philosophers and cognitive scientists who have operated with this picture have taken their job to be telling us what sort of content these mental sentences have, how that content is structured, how the sentences come to have it, how they get put into and taken out of storage, how they interact with one another, how they influence behaviour, and so on.

This emphasis on states has caused us to underestimate the importance of non-static mental entities, such as inferences, actions, and encounters with the world. If we take these dynamic entities to be among the most fundamental of the items in the mental domain, then — I argue — we can avoid a number of philosophical problems. Most importantly, we can avoid a picture in which intelligent thought would be beyond the capacities of any physically implementable system.

II: The Unexplained Intellect: Computation and the explanation of intelligence

A lot of philosophers think that consciousness is what makes the mind/body problem interesting, perhaps because they think that consciousness is the only part of that problem that remains wholly philosophical. Other aspects of the mind are taken to be explicable by scientific means, even if explanatorily adequate theories of them remain to be specified.

\ldots I’ll remind the reader of computability theory’s power, with a view to indicating how it is that the discoveries of theoretical computer scientists place constraints on our understanding of what intelligence is, and of how it is possible.

III: The Unexplained Intellect: The importance of computability

If we found that we had been conceiving of intelligence in such a way that intelligence could not be modelled by a Turing Machine, our response should not be to conclude that some alternative must be found to a ‘Classically Computational Theory of the Mind’. To think only that would be to underestimate the scope of the theory of computability. We should instead conclude that, on the conception in question, intelligence would (be) absolutely inexplicable. This need to avoid making intelligence inexplicable places constraints on our conception of what intelligence is.

IV: The Unexplained Intellect: Consequences of imperfection

The lesson to be drawn is that, if we think of intelligence as involving the maintenance of satisfiable beliefs, and if we think of our beliefs as corresponding to a set of representational states, then our intelligence would depend on a run of good luck the chances of which are unknown.

My suggestion is that we can reach a more explanatorily satisfactory conception of intelligence if we adopt a dynamic picture of the mind’s metaphysical foundations.

V: The Unexplained Intellect: The importance of rapport

I suggest that something roughly similar is true of us. We are not guaranteed to have satisfiable beliefs, and sometimes we are rather bad at avoiding unsatisfiability, but such intelligence as we have is to be explained by reference to the rapport between our minds and the world.

Rather than starting from a set of belief states, and then supposing that there is some internal process operating on these states that enables us to update our beliefs rationally, we should start out by accounting for the dynamic processes through which the world is epistemically encountered. Much as the three-colourable map generator reliably produces three-colourable maps because it is essential to his map-making procedure that borders appear only where they will allow for three colorability, so it is essential to what it is for a state to be a belief that beliefs will appear only if there is some rapport between the believer and the world. And this rapport — rather than any internal processing considered in isolation from it — can explain the tendency for our beliefs to respect the demands of intelligence.

VI: The Unexplained Intellect: The mind’s dynamic foundations

\ldots memory is essentially a form of epistemic retentiveness: One’s present knowledge counts as an instance of memory when and only when it was attained on the basis of an epistemic encounter that lies in one’s past. One can epistemically encounter a proposition as the conclusion of an argument, and so can encounter it before the occurrence of any event to which it pertains, but one cannot encounter an event in that way. In the resulting explanation of memory’s temporal asymmetry, it is the dynamic events of epistemic encountering to which we must make reference. These encounters, and not the knowledge states to which they lead, do the lion’s share of the explanatory work.

A: Simplifying Mole’s perspective

It may help simplify Mole’s thought-provoking perspective if we make an arbitrary distinction between:

(i) The mind of an applied scientist, whose primary concern is our sensory observations of a ‘common’ external world;

(ii) The mind of a philosopher, whose primary concern is abstracting a coherent perspective of the external world from our sensory observations; and

(iii) The mind of a mathematician, whose primary concern is adequately expressing such abstractions in a formal language of unambiguous communication.

My understanding of Mole’s thesis, then, is that:

(a) although a mathematician’s mind may be capable of defining the ‘truth’ value of some logical and mathematical propositions without reference to the external world,

(b) the ‘truth’ value of any logical or mathematical proposition that purports to represent any aspect of the real world must be capable of being evidenced objectively to the mind of an applied scientist; and that,

(c) of the latter ‘truths’, what should interest the mind of a philosopher is whether there are some that are ‘knowable’ completely independently of the passage of time, and some that are ‘knowable’ only partially, or incrementally, with the passage of time.

B. Support for Mole’s thesis

It also seems to me that Mole’s thesis implicitly subsumes, or at the very least echoes, the belief expressed by Chetan R. Murthy (‘An Evaluation Semantics for Classical Proofs‘, Proceedings of Sixth IEEE Symposium on Logic in Computer Science, pp. 96-109, 1991; also Cornell TR 91-1213):

“It is by now folklore … that one can view the values of a simple functional language as specifying evidence for propositions in a constructive logic …”

If so, the thesis seems significantly supported by the following paper that is due to appear in the December 2016 issue of ‘Cognitive Systems Research’:

The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas’ Goedelian Thesis

The CSR paper implicitly suggests that there are, indeed, (only?) two ways of assigning ‘true’ or ‘false’ values to any mathematical description of real-world events.

C. Algorithmic computability

First, a number theoretical relation F(x) is algorithmically computable if, and only if, there is an algorithm AL_{F} that can provide objective evidence (cf. ibid Murthy 91) for deciding the truth/falsity of each proposition in the denumerable sequence \{F(1), F(2), \ldots\}.

(We note that the concept of `algorithmic computability’ is essentially an expression of the more rigorously defined concept of `realizability’ on p.503 of Stephen Cole Kleene’s ‘Introduction to Metamathematics‘, North Holland Publishing Company, Amsterdam.)

D. Algorithmic verifiability

Second, a number-theoretical relation F(x) is algorithmically verifiable if, and only if, for any given natural number n, there is an algorithm AL_{(F,\ n)} which can provide objective evidence for deciding the truth/falsity of each proposition in the finite sequence \{F(1), F(2), \ldots, F(n)\}.

We note that algorithmic computability implies the existence of an algorithm that can finitarily decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions, whereas algorithmic verifiability does not imply the existence of an algorithm that can finitarily decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions.

The following theorem (Theorem 2.1, p.37 of the CSR paper) shows that although every algorithmically computable relation is algorithmically verifiable, the converse is not true:

Theorem: There are number theoretic functions that are algorithmically verifiable but not algorithmically computable.

E. The significance of algorithmic ‘truth’ assignments for Mole’s theses

The significance of such algorithmic ‘truth’ assignments for Mole’s theses is that:

Algorithmic computability—reflecting the ambit of classical Newtonian mechanics—characterises natural phenomena that are determinate and predictable.

Such phenomena are describable by mathematical propositions that can be termed as ‘knowable completely’, since at any point of time they are algorithmically computable as ‘true’ or ‘false’.

Hence both their past and future behaviour is completely computable, and their ‘truth’ values are therefore ‘knowable’ independent of the passage of time.

Algorithmic verifiability—reflecting the ambit of Quantum mechanics—characterises natural phenomena that are determinate but unpredictable.

Such phenomena are describable by mathematical propositions that can only be termed as ‘knowable incompletely’, since at any point of time they are only algorithmically verifiable, but not algorithmically computable, as ‘true’ or ‘false’

Hence, although their past behaviour is completely computable, their future behaviour is not completely predictable, and their ‘truth’ values are not independent of the passage of time.

F. Where Mole’s implicit faith in the adequacy of set theoretical representations of natural phenomena may be misplaced

It also seems to me that, although Mole’s analysis justifiably holds that the:

\ldots importance of the rapport between an organism and its environment”

has been underacknowledged, or even overlooked, by existing theories of the mind and intelligence, it does not seem to mistrust, and therefore ascribe such underacknowledgement to any lacuna in, the mathematical and epistemic foundations of the formal language in which almost all descriptions of real-world events are currently sought to be expressed, which is the language of the set theory ZF.

G. Any claim to a physically manifestable ‘truth’ must be objectively accountable

Now, so far as applied science is concerned, history teaches us that the ‘truth’ of any mathematical proposition that purports to represent any aspect of the external world must be capable of being evidenced objectively; and that such ‘truths’ must not be only of a subjective and/or revelationary nature which may require truth-certification by evolutionarily selected prophets.

(Not necessarily religious—see, for instance, Melvyn B. Nathanson’s remarks, “Desperately Seeking Mathematical Truth“, in the Opinion piece in the August 2008 Notices of the American Mathematical Society, Vol. 55, Issue 7.)

The broader significance of seeking objective accountability is that it admits the following (admittedly iconoclastic) distinction between the two fundamental mathematical languages:

1. The first-order Peano Arithmetic PA as the language of science; and

2. The first-order Set Theory ZF as the language of science fiction.

It is a distinction that is faintly reflected in Stephen G. Simpson’s more conservative perspective in his paper ‘Partial Realizations of Hilbert’s Program‘ (#6.4, p.15):

“Finitistic reasoning (my read: ‘First-order Peano Arithmetic PA’) is unique because of its clear real-world meaning and its indispensability for all scientific thought. Nonfinitistic reasoning (my read: ‘First-order Set Theory ZF’) can be accused of referring not to anything in reality but only to arbitrary mental constructions. Hence nonfinitistic mathematics can be accused of being not science but merely a mental game played for the amusement of mathematicians.”

The distinction is supported by the formal argument (detailed in the above-cited CSR paper) that:

(i) PA has two, hitherto unsuspected, evidence-based interpretations, the first of which can be treated as circumscribing the ambit of human reasoning about ‘true’ arithmetical propositions; and the second can be treated as circumscribing the ambit of mechanistic reasoning about ‘true’ arithmetical propositions.

What this means is that the language of arithmetic—formally expressed as PA—can provide all the foundational needs for all practical applications of mathematics in the physical sciences. This was was the point that I sought to make—in a limited way, with respect to quantum phenomena—in the following paper presented at Unilog 2015, Istanbul last year:

Algorithmically Verifiable Logic vis `a vis Algorithmically Computable Logic: Could resolving EPR need two complementary Logics?

(Presented on 26’th June at the workshop on ‘Emergent Computational Logics’ at UNILOG’2015, 5th World Congress and School on Universal Logic, 20th June 2015 – 30th June 2015, Istanbul, Turkey.)

(ii) Since ZF axiomatically postulates the existence of an infinite set that cannot be evidenced (and which cannot be introduced as a constant into PA, or as an element into the domain of any interpretation of PA, without inviting inconsistency—see Theorem 1 in \S4 of this post), it can have no evidence-based interpretation that could be treated as circumscribing the ambit of either human reasoning about ‘true’ set-theoretical propositions, or that of mechanistic reasoning about ‘true’ set-theoretical propositions.

The language of set theory—formally expressed as ZF—thus provides the foundation for abstract structures that—although of possible interest to philosophers of science—are only mentally conceivable by mathematicians subjectively, and have no verifiable physical counterparts, or immediately practical applications of mathematics, that can materially impact on the study of physical phenomena.

The significance of this distinction can be expressed more vividly in Russell’s phraseology as:

(iii) In the first-order Peano Arithmetic PA we always know what we are talking about, even though we may not always know whether it is true or not;

(iv) In the first-order Set Theory we never know what we are talking about, so the question of whether or not it is true is only of fictional interest.

H. The importance of Mole’s ‘rapport’

Accordingly, I see it as axiomatic that the relationship between an evidence-based mathematical language and the physical phenomena that it purports to describe, must be in what Mole terms as ‘rapport’, if we view mathematics as a set of linguistic tools that have evolved:

(a) to adequately abstract and precisely express through human reasoning our observations of physical phenomena in the world in which we live and work; and

(b) unambiguously communicate such abstractions and their expression to others through objectively evidenced reasoning in order to function to the maximum of our co-operative potential in acieving a better understanding of physical phenomena.

This is the perspective that I sought to make in the following paper presented at Epsilon 2015, Montpellier, last June, where I argue against the introduction of ‘unspecifiable’ elements (such as completed infinities) into either a formal language or any of its evidence-based interpretations (in support of the argument that since a completed infinity cannot be evidence-based, it must therefore be dispensible in any purported description of reality):

Why Hilbert’s and Brouwer’s interpretations of quantification are complementary and not contradictory.’

(Presented on 10th June at the Epsilon 2015 workshop on ‘Hilbert’s Epsilon and Tau in Logic, Informatics and Linguistics’, 10th June 2015 – 12th June 2015, University of Montpellier, France.)

I. Why mathematical reasoning must reflect an ‘agnostic’ perspective

Moreover, from a non-mathematician’s perspective, a Propertarian like Curt Doolittle would seem justified in his critique (comment of June 2, 2016 in this Quanta review) of the seemingly ‘mystical’ and ‘irrelevant’ direction in which conventional interpretations of Hilbert’s ‘theistic’ and Brouwer’s ‘atheistic’ reasoning appear to have pointed mainstream mathematics for, as I argue informally in an earlier post, the ‘truths’ of any mathematical reasoning must reflect an ‘agnostic’ perspective.

Author’s working archives & abstracts of investigations

Bhupinder Singh Anand

Advertisements