**Can Gödel be held responsible for not clearly distinguishing—in his seminal 1931 paper on formally undecidable propositions (pp.596-616, ‘ From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931‘, Jean van Heijenoort, Harvard University Press, 1976 printing)—between the implicit circularity that is masked by the non-constructive nature of his proof of undecidability in PM, and the lack of any circularity in his finitary proof of undecidability in Peano Arithmetic?**

“The analogy of this argument with the Richard antinomy leaps to the eye. It is closely related to the “Liar” too;[*Fn.14*] for the undecidable proposition states that belongs to , that is, by (1), that is not provable. We therefore have before us a proposition that says about itself that it is not provable [in PM].[*Fn.15*] …

[*Fn.14*] Any epistemological antinomycould be used for a similar proof of the existence of undecidable propositions.”

[*Fn.15*] Contrary to appearances, such a proposition involves no faulty circularity, for initially it [only] asserts that a certain well-defined formula (namely, the one obtained from the th formula in the lexicographic order by a certain substitution) is unprovable. Only subsequently (and so to speak by chance) does it turn out that this formula is precisely the one by which the proposition itself was expressed.”

It is a question worth asking, if we heed Abel-Luis Peralta, who is a Graduate in Scientific Calculus and Computer Science in the Faculty of Exact Sciences at the National University of La Plata in Buenos Aires, Argentina; and who has been contending in a number of posts on his Academia web-page that:

(i) Gödel’s semantic definition of ‘‘, and therefore of ‘‘, is not only:

(a) self-referential under interpretation—in the sense of the above quote (pp.597-598, van Heijenoort) from Gödel’s Introduction in his 1931 paper ‘On Formally Undecidable Propositions of Principia Mathematica and Related Systems I’ (pp.596-616, van Heijenoort);

but that:

(b) neither of the definitions can be verified by a deterministic Turing machine as yielding a valid formula of PM.

Peralta is, of course, absolutely right in his contentions.

However, such non-constructiveness is a characteristic of any set-theoretical system in which PM is interpretable; and in which, by Gödel’s self-confessed Platonism (apparent in his footnote #15 in the quote above), we do not need to establish that his definitions of ‘‘ and ‘‘ need to be verifiable by a deterministic Turing machine in order to be treated as valid formulas of PM.

*Reason*: By the usual axiom of separation of any formal set theory such as ZFC in which PM is interpreted, Gödel’s set-theoretical definition (p.598, Heijenoort):

lends legitimacy to as a PM formula.

Thus Gödel can formally assume—without further proof, by appeal simply to the axiom of choice of ZFC—that the PM formulas with exactly one variable—of the type of natural numbers—can be well-ordered in a sequence in some way such as, for example (Fn.11, p.598, Heijenoort):

“… by increasing the sum of the finite sequences of integers that is the ‘class sign’;, and lexicographically for equal sums.”

We cannot, though, conclude from this that:

(ii) Gödel’s formally undecidable P-formula, say —whose Gödel-number is defined as in Gödel’s proof of his Theorem VI (on pp.607-609 of van Heijenoort)—also cannot be verified by a deterministic Turing machine to be a valid formula of Gödel’s Peano Arithmetic P.

*Reason*: The axioms of set-theoretical systems such as PM, ZF, etc. would all admit—under a well-defined interpretation, if any—infinite elements, in the putative domain of any such interpretation, which are not Turing-definable.

Nevertheless, to be fair to two generations of scholars who—apart from those who are able to comfortably wear the logician’s hat—have laboured in attempts to place the philosophical underpinnings of Gödel’s reasoning (in his 1931 paper) in a coherent perspective (see this post; also this and this), I think Gödel must, to some extent, be held responsible—but in no way accountable—for the lack of a clear-cut distinction between the non-constructivity implicit in his semantic proof in (i), and the finitarity that he explicitly ensures for his syntactic proof in (ii).

Reason: Neither in his title, nor elsewhere in his paper, does Gödel categorically state that his goal was:

(iii) not only to demonstrate the existence of formally undecidable propositions in PM, a system which admits non-finitary elements under any putative interpretation;

(iv) but also to prevent the admittance of non-finitary elements—precisely those which would admit conclusions such as (ii)—when demonstrating the existence of formally undecidable propositions in ‘related’ systems such as his Peano Arithmetic P.

He merely hints at this by stating (see quote below from pp.587-589 of van Heijenoort) that his demonstration of (iii) is a ‘sketch’ that lacked the precision which he intended to achieve in (iv):

“Before going into details, we shall first sketch the main idea of the proof, of course without any claim to complete precision. The formulas of a formal system (we restrict ourselves here to the system PM) in outward appearance are finite sequences of primitive signs (variables, logical constants, and parentheses or punctuation dots), and it is easy to state with complete precision which sequences of primitive signs are meaningful formulas and which are not….

by:

(v) weakening the implicit assumption—of the decidability of the semantic truth of PM-propositions under any well-defined interpretation of PM—which underlies his proof of the existence of formally undecidable set-theoretical propositions in PM;

The method of proof just explained can clearly be applied to any formal system that, first, when interpreted as representing a system of notions and propositions, has at its disposal sufficient means of expression to define the notions occurring in the argument above (in particular, the notion “provable formula”) and in which, second, every provable formula is true in the interpretation considered. The purpose of carrying out the above proof with full precision in what follows is, among other things, to replace the second of the assumptions just mentioned by a purely formal and much weaker one.”

and:

(vi) insisting—in his proof of the existence of formally undecidable arithmetical propositions in his Peano Arithmetic P—upon the introduction of a methodology for constructively assigning unique truth values to only those (primitive recursive) quantified number-theoretic assertions (#1 to #45 on pp.603-606 of van Heijenoort) that are bounded when interpreted over the domain N of the natural numbers (footnote #34 on p.603 of van Heijenoort):

“Wherever one of the signs , , or occurs in the definitions below, it is followed by a bound on . This bound serves merely to ensure that the notion defined is recursive (see Theorem IV). But in most cases the extension of the notion defined would not change if this bound were omitted.”

From today’s perspective, one could reasonably hold that—as Peralta implicitly contends—Gödel is misleadingly suggesting (in the initial quote above from pp.587-589 of van Heijenoort) that his definitions of ‘‘ and ‘‘ may be treated as yielding ‘meaningful’ formulas of PM which are well-definable constructively (in the sense of being definable by a deterministic Turing machine).

In my previous post I detailed precisely why such an assumption would be fragile, by showing how the introduction of the boundedness Gödel insisted upon in (vi) distinguishes:

(vii) Gödel’s semantic proof of the existence of formally undecidable set-theoretical propositions in PM (pp.598-599 of van Heijenoort), which admits Peralta’s contention (1);

from:

(viii) Gödel’s syntactic proof of the existence of formally undecidable arithmetical propositions in the language of his Peano Arithmetic P (pp.607-609 of van Heijenoort), which does not admit the corresponding contention (ii).

Moreover, we note that:

(1) Whereas Gödel can—albeit non-constructively—claim that his definition of ‘‘ yields a formula in PM, we cannot claim, correspondingly, that his primitive recursive formula is a formula in his Peano Arithmetic P.

(2) The latter is a number-theoretic relation defined by Gödel in terms of his primitive recursive relation #45, ‘‘, as:

#46. .

(3) In Gödel’s terminology, ‘‘ translates under interpretation over the domain N of the natural numbers as:

‘ is the Gödel-number of some provable formula of Gödel’s Peano Arithmetic P’.

(4) However, unlike Gödel’s primitive recursive functions and relations #1 to #45, both ‘‘ and ‘‘ are number-theoretic relations which are not primitive recursive—which means that they are not effectively decidable by a Turing machine under interpretation in N.

(5) Reason: Unlike in Gödel’s definitions #1 to #45 (see footnote #34 on p.603 of van Heijenoort, quoted above), there is no bound on the quantifier ‘‘ in the definition of .

Hence, by Turing’s Halting Theorem, we cannot claim—in the absence of specific proof to the contrary—that there must be some deterministic Turing machine which will determine whether or not, for any given natural number , the assertion is true under interpretation in N.

This is the crucial difference between Gödel’s semantic proof of the existence of formally undecidable set-theoretical propositions in PM (which admits Peralta’s contention (i)), and Gödel’s syntactic proof of the existence of formally undecidable arithmetical propositions in the language of his Peano Arithmetic P (which does not admit his contention (i)).

(6) We cannot, therefore—in the absence of specific proof to the contrary—claim by Gödel’s Theorems V or VII that there must be some P-formula, say [Bew (corresponding to the PM-formula ), such that, for any given natural number :

(a) If is true under interpretation in N, then [Bew is provable in P;

(b) If is true under interpretation in N, then [Bew is provable in P.

## 3 comments

Comments feed for this article

December 7, 2018 at 3:21 am

Abel PeraltaDear Bhup:

Highly recognized for your mention of my opinions at Academia.edu.

Your criticism is brilliant, and I think it will serve to dispel many, quite frequent misunderstandings, about the way in which circularity affects Gödel’s reasoning in his incompleteness theorems.

However, it does not affect my arguments. I do not rely on the standard model, but on the syntax only; nor do I suppose that the Bew(x) function is primitive recursive.

My contention is that the undecidable sentence is an empty formula: there is no elementary Diophantic equation, nor Boolean combination of quantified equations to preach that is or is not demonstrable, because the substitution function is not computable whit its own GN as argument. This is not a Gödel’s error, nor a refutation of the theorem, but only another way to prove it.

But if this argument can be reproduced in the P system itself, it would allow GUS to be internally demonstrated, and therefore the inconsistency of the system, because of Gödel’s 45 additional definitions.

I am preparing an article, which I will upload to Academia.edu in the coming weeks.

Best regards,

Abel

December 7, 2018 at 4:49 pm

Bhupinder Singh AnandDear Abel,

When putting together your thesis, you might find it useful to reference others who have walked essentially the same path (see by John R. Lucas’ book `Reason and Reality’; also this post and this post).

Kind regards,

Bhup

December 8, 2018 at 12:39 am

Abel PeraltaDear Bhup:

Thanks for the suggestion. I have read Roger Penrose’s “The Emperor’s New Mind”, where he mentions Lucas, but I have not read the book you indicate. I will try to get it.

Best regards

Abel