You are currently browsing the tag archive for the ‘mechanist’ tag.

(*Notations, non-standard concepts, and definitions used commonly in these investigations are detailed in this post.*)

In this post I address two critical issues, as raised in private correspondence with researchers, which may illuminate some objections to Gödel’s reasoning and conclusions that have been raised elsewhere by Wittgenstein, Floyd, Putnam et al.:

(i) By Rosser’s reasoning, doesn’t simple consistency suffice for defining an undecidable arithmetical proposition?

(ii) Doesn’t Gödel’s undecidable formula assert its own unprovability?

NOTE: The following correspondence refers copiously to *this paper* that was *presented* in June 2015 at the workshop on *Hilbert’s Epsilon and Tau in Logic, Informatics and Linguistics*, University of Montpellier, France.

Subsequently, most of the cited results were detailed formally in *the following paper* due to appear in the December 2016 issue of ‘*Cognitive Systems Research*‘:

**A: Doesn’t simple consistency suffice for defining Rosser’s undecidable arithmetical proposition?**

“*You claim that the PA system is -inconsistent, and that Gödel’s first theorem holds vacuously. But by Rosser’s result, simple consistency suffices.*“

Well, it does seem surprising that Rosser’s claim—that his ‘undecidable’ proposition only assumes simple consistency—has not been addressed more extensively in the literature. Number-theoretic expositions of Rosser’s proof have generally remained either implicit or sketchy (see, for instance, *this post*).

Note that Rosser’s proposition and reasoning involve interpretation of an existential quantifier, whilst Gödel’s proposition and reasoning only involve interpretation of a universal quantifier.

The reason why Rosser’s claim is untenable is that—in order to interpret the existential quantifier as per Hilbert’s -calculus—Rosser’s argument needs to assume his Rule C (see Elliott Mendelson, *Introduction to Mathematical Logic*, 1964 ed., p.73), which implicitly implies that Gödel’s arithmetic P—in which Rosser’s argumentation is grounded—is -consistent .

See, for instance, *this analysis* of (a) *Wang’s* outline of Rosser’s argument on p.5, (b) *Beth’s outline* of Rosser’s argument on p.6, and (c) *Mendelson’s exposition* of Rosser’s argument in Section 4.2 on p.8.

Moreover, the assumption is foundationally fragile, because Rule C invalidly assumes that we can introduce an ‘unspecified’ formula denoting an ‘unspecified’ numeral into PA even if the formula has not been demonstrated to be algorithmically definable in terms of the alphabet of PA.

See Theorem 8.5 and following remarks in Section 8, pp.7-8 of *this paper* that was *presented* in June 2015 at the workshop on *Hilbert’s Epsilon and Tau in Logic, Informatics and Linguistics*, University of Montpellier, France.

**B: As I see it, rule C is only a shortcut.**

“*As I see it, rule C is only a shortcut; it is totally eliminable. Moreover, it is part of predicate logic, not of the Peano’s arithmetic.*“

Assuming that Rule C is a short cut which can always be eliminated is illusory, and is tantamount to invalidly (see Corollary 8.6, p.17 of *the Epsilon 2015 paper*) claiming that Hilbert’s calculus is a conservative extension of the first-order predicate calculus.

*Reason*: Application of Rule C invalidly (see Theorem 8.5 and following remarks in Section 8, pp.7-8 of *the Epsilon 2015 paper*) involves introduction of a new individual constant, say , in a first-order theory (see Mendelson 1964, p.74, I(iv)); ‘invalidly’ since Rule C does not qualify that must be algorithmically computable from the alphabet of —which is necessary if is first-order.

Notation: We use square brackets to indicate that the expression within the brackets denotes a well-formed formula of a formal system, say , that is to be viewed syntactically merely as a first-order string of —i.e, one which is finitarily constructed from the alphabet of the language of —without any reference to its meaning under any interpretation of .

Essentially, Rule C mirrors in the intuitionistically objectionable postulation that the formula of can always be interpreted as:

holds for some element

in the domain of the interpretation of under which the formula interprets as the relation .

*The Epsilon 2015 paper* shows that this is not a valid interpretation of the formula under any finitary, evidence-based, interpretation of .

That, incidentally, is a consequence of the proof that PA is not -consistent; which itself is a consequence of (Theorem 7.1, p.15, of *the Epsilon 2015 paper*):

**Provability Theorem for PA**: A PA formula is provable if, and only if, interprets as an arithmetical relation that is algorithmically computable as always true (see Definition 3, p.7, of *the Epsilon 2015 paper*) over the structure of the natural numbers.

Compare with what Gödel has essentially shown in his famous 1931 paper on formally undecidable arithmetical propositions, which is that (Lemma 8.1, p.16, of *the Epsilon 2015 paper*):

**Gödel**: There is a PA formula —which Gödel refers to by its Gödel number —which is not provable in PA, even though interprets as an arithmetical relation that is algorithmically verifiable as always true (see Definition 4, p.7, of *the Epsilon 2015 paper*) over the structure of the natural numbers.

**C: If you by-pass the intuitionist objections, would all logicist and post-formalist theories hold?**

“*If I have understood correctly, you claim that the PA system is -inconsistent from an intuitionistic point of view? If you by-pass the intuitionist objections, would all logicist and post-formalist theories hold?*“

There is nothing to bypass—the first-order Peano Arithmetic PA is a formal axiomatic system which is -inconsistent as much for an intuitionist, as it is for a realist, a finitist, a formalist, a logicist or a nominalist.

Philosophers may differ about beliefs that are essentially unverifiable; but the -incompleteness of PA is a verifiable logical meta-theorem that none of them would dispute.

**D: Isn’t Gödel’s undecidable formula —which Gödel refers to by its Gödel number —self-referential?**

*Isn’t Gödel’s undecidable formula —which Gödel refers to by its Gödel number —self-referential and covertly paradoxical?*

*According to Wittgenstein it interprets in any model as a sentence that is devoid of sense, or even meaning. I think a good reason for this is that the formula is simply syntactically wrongly formed: the provability of provability is not defined and can not be consistently defined.*

*What you propose may be correct, but for automation systems of deduction wouldn’t -inconsistency be much more problematic than undecidability? *

*How would you feel if a syntax rule is proposed, that formulas containing numerals are instantiations of open formulas that may not be part of the canonical language? Too daring, may be?*

Let me briefly respond to the interesting points that you have raised.

1. The -inconsistency of PA is a meta-theorem; it is a Corollary of the Provability Theorem of PA (Theorem 7.1, p.15, of *the Epsilon 2015 paper*).

2. Gödel’s PA-formula is not an undecidable formula of PA. It is merely unprovable in PA.

3. Moreover, Gödel’s PA-formula is provable in PA, which is why the PA formula is not an undecidable formula of PA.

4. Gödel’s PA-formula is not self-referential.

5. Wittgenstein correctly believed—albeit purely on the basis of philosophical considerations unrelated to whether or not Gödel’s formal reasoning was correct—that Gödel was wrong in stating that the PA formula asserts its own unprovability in PA.

*Reason*: We have for Gödel’s primitive recursive relation that:

is true if, and only if, the PA formula is provable in PA.

However, in order to conclude that the PA formula asserts its own unprovability in PA, Gödel’s argument must further imply—which it does not—that:

is true (and so, by Gödel’s definition of , the PA formula is not provable in PA) if, and only if, the PA formula is provable in PA.

In other words, for the PA formula to assert its own unprovability in PA, Gödel must show—which his own argument shows is impossible, since the PA formula is not provable in PA—that:

The primitive recursive relation is algorithmically computable as always true if, and only if, the arithmetical relation is algorithmically computable as always true (where is the arithmetical interpretation of the PA formula over the structure of the natural numbers).

6. Hence, Gödel’s PA-formula is not covertly paradoxical.

7. **IF** Wittgenstein believed that the PA formula is empty of meaning and has no valid interpretation, then he was wrong, and—as Gödel justifiably believed—he could not have properly grasped Gödel’s formal reasoning that:

(i) ‘ is not -provable’ is a valid meta-theorem if PA is consistent, which means that:

‘If PA is consistent and we assume that the PA formula is provable in PA, then the PA formula must also be provable in PA; from which we may conclude that the PA formula is not provable in PA’

(ii) ‘ is not -provable’ is a valid meta-theorem ONLY if PA is -consistent, which means that:

‘If PA is -consistent and we assume that the PA formula is provable in PA, then the PA formula must also be provable in PA; from which we may conclude that the PA formula is not provable in PA’.

8. In fact the PA formula has the following TWO meaningful interpretations (the first of which is a true arithmetical meta-statement—since the PA formula is provable in PA for any PA-numeral —but the second is not—since the PA formula is not provable in PA):

(i) For any given natural number , there is an algorithm which will verify that each of the arithmetical meta-statements ‘ is true’, ‘ is true’, …, ‘ is true’ holds under the standard, algorithmically verifiable, interpretation of PA (see \S 5, p.11 of *the Epsilon 2015 paper*);

(ii) There is an algorithm which will verify that, for any given natural number , the arithmetical statement ‘ is true’ holds under the finitary, algorithmically computable, interpretation of PA (see \S 6, p.13 of *the Epsilon 2015 paper*).

9. **IF** Wittgenstein believed that the PA formula is not a well-defined PA formula, then he was wrong.

Gödel’s definition of the PA formula yields a well-formed formula in PA, and cannot be treated as ‘syntactically wrongly formed’.

10. The Provability Theorem for PA shows that both ‘proving something in PA’ and ‘proving that something is provable in PA’ are finitarily well-defined meta-mathematical concepts.

11. The Provability Theorem for PA implies that PA is complete with respect to the concepts of satisfaction, truth and provability definable in automated deduction systems, which can only define algorithmically computable truth.

12. The Provability Theorem for PA implies that PA is categorical, so you can introduce your proposed syntax rule ONLY if it leads to a conservative extension of PA.

13. Whether ‘daring’ or not, why would you want to introduce such a rule?

**E: Consider these two statements of yours …**

*Consider these two statements of yours:*

*“(iv): is the Gödel-number of the formula of PA” and*

*“D(4): Gödel’s PA-formula is not self-referential.”*

*If ‘‘ is the Gödel-number of the open formula in para (iv), and the second argument of the closed formula in para D(4) is ‘‘, then the second formula is obtained by instantiating the variable ‘‘ in the first with its own Gödel-number.*

*So how would you call, in one word, the relation between the entire formula (in D(4)) and its second argument?*

Para D(4) is an attempt to clarify precisely this point.

1. Apropos the first statement ‘(iv)’ cited by you:

From a pedantic perspective, the “relation between the entire formula (in D(4)) and its second argument” cannot be termed self-referential because the “second argument”, i.e., , is the Gödel-number of the PA formula , and not that of “the entire formula (in 4)”, i.e., of the formula itself (whose Gödel number is ).

Putting it crudely, is neither self-referential—nor circularly defined—because it is not defined in terms of , but in terms of .

2. Apropos the second statement ‘D(4)’ cited by you:

I would interpret:

Gödel’s PA-formula is self-referential

to mean, in this particular context, that—as Gödel wrongly claimed:

asserts its own unprovability in PA.

Now, if we were to accept the claim that is self-referential in the above sense, then (as various critics of Gödel’s reasoning have pointed out) we would have to conclude further that Gödel’s argument leads to the contradiction:

is true—and so, by Gödel’s definition of —the PA formula is not provable in PA—if, and only if, the PA formula is provable in PA.

However, in view of the Provability Theorem of PA (Theorem 7.1, p.15, of *the Epsilon 2015 paper*), this contradiction would only follow if Gödel’s argument were to establish (which it does not) that:

The primitive recursive relation is algorithmically computable as always true if, and only if, the arithmetical interpretation of the PA formula is algorithmically computable as always true over the structure of the natural numbers.

The reason Gödel cannot claim to have established the above is that his argument only proves the much weaker meta-statement:

The arithmetical interpretation of the PA formula is algorithmically verifiable as always true over the structure of the natural numbers.

Ergo—contrary to Gödel’s claim— Gödel’s PA-formula is not self-referential (and so, even though Gödel’s claimed interpretation of what his own reasoning proves is wrong, there is no paradox in Gödel’s reasoning per se)!

**F: Is the PA system -inconsistent without remedy?**

*Is the PA system -inconsistent without remedy? Is it possible to introduce a new axiom or new rule which by-passes the problematic unprovable statements of the Gödel-Rosser Theorems?*

1. Please note that the first-order Peano Arithmetic PA is:

(i) consistent (Theorem 7.3, p.15, of *the Epsilon 2015 paper*); which means that for any PA-formula , we cannot have that both and are Theorems of PA;

(ii) complete (Theorem 7.1, p.15, of *the Epsilon 2015 paper*); which means that we cannot add an axiom to PA which is not a Theorem of PA without inviting inconsistency;

(iii) categorical (Theorem 7.2, p.15, of *the Epsilon 2015 paper*); which means that if is an interpretation of PA over a structure , and is an interpretation of PA over a structure , then and are identical and denote the structure of the natural numbers defined by Dedekind’s axioms; and so PA has no model which contains an element that is not a natural number (see Footnote 54, p.16, of *the Epsilon 2015 paper*).

2. What this means with respect to Gödel’s reasoning is that:

(i) PA has no undecidable propositions, which is why it is not -consistent (Corollary 8.4, p.16, of *the Epsilon 2015 paper*);

(ii) The Gödel formula is not provable in PA; but it is algorithmically verifiable as true (Corollary 8.3, p.16, of *the Epsilon 2015 paper*) under the algorithmically verifiable standard interpretation of PA (see Section 5, p.11, of *the Epsilon 2015 paper*) over the structure of the natural numbers;

(iii) The Gödel formula is not provable in PA; and it is algorithmically computable as false (Corollary 8.3, p.16, of *the Epsilon 2015 paper*) under the algorithmically computable finitary interpretation of PA (see Section 6, p.13, of *the Epsilon 2015 paper*) over the structure of the natural numbers;

(iv) The Gödel formula is provable in PA; and it is therefore also algorithmically verifiable as true under the algorithmically verifiable standard interpretation of PA over the structure of the natural numbers—which means that the logic by which the standard interpretation of PA assigns values of ‘satisfaction’ and ‘truth’ to the formulas of PA (under Tarski’s definitions) may be paraconsistent (see *http://plato.stanford.edu/entries/logic-paraconsistent*) since PA is consistent;

(v) The Gödel formula is provable in PA; and it is therefore algorithmically computable as true (Corollary 8.2, p.16, of *the Epsilon 2015 paper*) under the algorithmically computable finitary interpretation of PA over the structure of the natural numbers.

3. It also means that:

(a) The “Gödel-Rosser Theorem” is not a Theorem of PA;

(b) The “unprovable Gödel sentence” is not a “problematic statement”;

(c) The “PA system” does not require a “remedy” just because it is “-inconsistent”;

(d) No “new axiom or new rule” can “by-pass the unprovable sentence”.

4. Which raises the question:

Why do you see the “unprovable Gödel sentence” as a “problematic statement” that requires a “remedy” which must “by-pass the unprovable sentence”?

(*Notations, non-standard concepts, and definitions used commonly in these investigations are detailed in this post.*)

**Ferguson’s and Priest’s thesis**

In a brief, but provocative, *review* of what they term as “the enduring evolution of logic” over the ages, the authors of Oxford University Press’ recently released ‘*A Dictionary of Logic*‘, philosophers *Thomas Macaulay Ferguson* and *Graham Priest*, take to task what they view as a Kant-influenced manner in which logic is taught as a first course in most places in the world:

“… as usually ahistorical and somewhat dogmatic. This is what logic is; just learn the rules. It is as if Frege had brought down the tablets from Mount Sinai: the result is God-given, fixed, and unquestionable.”

Ferguson and Priest conclude their review by remarking that:

“Logic provides a theory, or set of theories, about what follows from what, and why. And like any theoretical inquiry, it has evolved, and will continue to do so. It will surely produce theories of greater depth, scope, subtlety, refinement—and maybe even truth.”

However, it is not obvious whether that is prescient optimism, or a tongue-in-cheek exit line!

** A nineteenth century parody of the struggle to define ‘truth’ objectively**

For, if anything, the developments in logic since around 1931 has—seemingly in gross violation of the hallowed principle of Ockham’s razor, and its crude, but highly effective, modern avatar KISS—indeed produced a plethora of theories of great depth, scope, subtlety, and refinement.

These, however, seem to have more in common with the, cynical, twentieth century emphasis on subjective, unverifiable, ‘truth’, rather than with the concept of an objective, evidence-based, ‘truth’ that centuries of philosophers and mathematicians strenuously struggled to differentiate and express.

A struggle reflected so eloquently in *this nineteenth century quote*:

“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just what I choose it to mean—neither more nor less.”

“The question is,” said Alice, “whether you can make words mean so many different things.”

“The question is,” said Humpty Dumpty, “which is to be master—that’s all.”

… Lewis Carroll (Charles L. Dodgson), ‘Through the Looking-Glass’, chapter 6, p. 205 (1934 ed.). First published in 1872.

**Making sense of mathematical propositions about infinite processes**

It was, indeed, an epic struggle which culminated in the nineteenth century standards of rigour successfully imposed—in no small measure by the works of Augustin-Louis Cauchy and Karl Weierstrasse—on verifiable interpretations of mathematical propositions about infinite processes involving real numbers.

A struggle, moreover, which should have culminated equally successfully in similar twentieth century standards—on verifiable interpretations of mathematical propositions containing references to infinite computations involving integers—sought to be imposed in 1936 by Alan Turing upon philosophical and mathematical discourse.

**The Liar paradox**

For it follows from Turing’s 1936 reasoning that where quantification is not, or cannot be, explicitly defined in formal logical terms—eg. the classical expression of the Liar paradox as ‘This sentence is a lie’—a paradox cannot per se be considered as posing serious linguistic or philosophical concerns (see, for instance, the series of four posts beginning *here*).

Of course—as reflected implicitly in Kurt Gödel’s seminal 1931 paper on undecidable arithmetical propositions—it would be a matter of serious concern if the word ‘This’ in the English language sentence, ‘This sentence is a lie’, could be validly viewed as implicitly implying that:

(i) there is a constructive infinite enumeration of English language sentences;

(ii) to each of which a truth-value can be constructively assigned by the rules of a two-valued logic; and,

(iii) in which ‘This’ refers uniquely to a particular sentence in the enumeration.

**Gödel’s influence on Turing’s reasoning**

However, Turing’s constructive perspective had the misfortune of being subverted by a knee-jerk, anti-establishment, culture that was—and apparently remains to this day—overwhelmed by Gödel’s powerful Platonic—and essentially unverifiable—mathematical and philosophical 1931 interpretation of his own construction of an arithmetical proposition that is formally unprovable, but undeniably true under any definition of ‘truth’ in any interpretation of arithmetic over the natural numbers.

Otherwise, I believe that Turing could easily have provided the necessary constructive interpretations of arithmetical truth—sought by David Hilbert for establishing the consistency of number theory finitarily—which is addressed by *the following paper* due to appear in the December 2016 issue of ‘*Cognitive Systems Research*‘:

**What is logic: using Ockham’s razor**

Moreover, the paper endorses the implicit orthodoxy of an Ockham’s razor influenced perspective—which Ferguson and Priest seemingly find wanting—that logic is simply a deterministic set of rules that must constructively assign the truth values of ‘truth/falsity’ to the sentences of a language.

It is a view that I expressed earlier as the key to a possible resolution of the *EPR paradox* in the *following paper* that I *presented* on 26’th June at the workshop on *Emergent Computational Logics* at UNILOG’2015, Istanbul, Turkey:

where I introduced the definition:

A finite set of rules is a Logic of a formal mathematical language if, and only if, constructively assigns unique truth-values:

(a) Of provability/unprovability to the formulas of ; and

(b) Of truth/falsity to the sentences of the Theory which is defined semantically by the -interpretation of over a structure .

I showed there that such a definitional rule-based approach to ‘logic’ and ‘truth’ allows us to:

Equate the provable formulas of the first order Peano Arithmetic PA with the PA formulas that can be evidenced as `true’ under an algorithmically computable interpretation of PA over the structure of the natural numbers;

Adequately represent some of the philosophically troubling abstractions of the physical sciences mathematically;

Interpret such representations unambiguously; and

Conclude further:

First that the concept of infinity is an emergent feature of any mechanical intelligence whose true arithmetical propositions are provable in the first-order Peano Arithmetic; and

Second that discovery and formulation of the laws of quantum physics lies within the algorithmically computable logic and reasoning of a mechanical intelligence whose logic is circumscribed by the first-order Peano Arithmetic.

(*Notations, non-standard concepts, and definitions used commonly in these investigations are detailed in this post.*)

**We investigate whether the probabilistic distribution of prime numbers can be treated as a heuristic model of quantum behaviour, since it too can be treated as a quantum phenomena, with a well-defined binomial probability function that is algorithmically computable, where the conjectured values of differ from actual values with a binomial standard deviation, and where we define a phenomena as a quantum phenomena if, and only if, it obeys laws that can only be represented mathematically by functions that are algorithmically verifiable, but not algorithmically computable.**

**1. Thesis: The concept of ‘mathematical truth’ must be accountable**

The thesis of this investigation is that a major philosophical challenge—which has so far inhibited a deeper understanding of the quantum behaviour reflected in the mathematical representation of some laws of nature (see, for instance, *this paper* by Eamonn Healey)—lies in holding to account the uncritical acceptance of propositions of a mathematical language as true under an interpretation—either axiomatically or on the basis of subjective self-evidence—without any specified methodology of accountability for objectively evidencing such acceptance.

**2. The concept of ‘set-theoretical truth’ is not accountable**

Since current folk lore is that all scientific truths can be expressed adequately, and communicated unambiguously, in the first order Set Theory ZF, and since the Axiom of Infinity of ZF cannot—even in principle—be objectively evidenced as true under any putative interpretation of ZF (as we argue in *this post*), an undesirable consequence of such an uncritical acceptance is that the distinction between the truths of mathematical propositions under interpretation which can be objectively evidenced, and those which cannot, is not evident.

**3. The significance of such accountability for mathematics**

The significance of such a distinction for mathematics is highlighted in this paper due to appear in the December 2016 issue of *Cognitive Systems Research*, where we address this challenge by considering the two finitarily accountable concepts of algorithmic verifiability and algorithmic computability (first introduced in *this paper* at the *Symposium on Computational Philosophy* at the AISB/IACAP World Congress 2012-Alan Turing 2012, Birmingham, UK).

**(i) Algorithmic verifiability**

A number-theoretical relation is algorithmically verifiable if, and only if, for any given natural number , there is an algorithm which can provide objective evidence for deciding the truth/falsity of each proposition in the finite sequence .

**(ii) Algorithmic computability**

A number theoretical relation is algorithmically computable if, and only if, there is an algorithm that can provide objective evidence for deciding the truth/falsity of each proposition in the denumerable sequence .

**(iii) Algorithmic verifiability vis à vis algorithmic computability**

We note that algorithmic computability implies the existence of an algorithm that can decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions, whereas algorithmic verifiability does not imply the existence of an algorithm that can decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions.

From the point of view of a finitary mathematical philosophy—which is the constraint within which an applied science ought to ideally operate—the significant difference between the two concepts could be expressed by saying that we may treat the decimal representation of a real number as corresponding to a physically measurable limit—and not only to a mathematically definable limit—if and only if such representation is definable by an algorithmically computable function (Thesis 1 on p.9 of *this paper* that was presented on 26th June at the workshop on *Emergent Computational Logics* at UNILOG’2015, 5th World Congress and School on Universal Logic, Istanbul, Turkey).

We note that although every algorithmically computable relation is algorithmically verifiable, the converse is not true.

We show in the CSR paper how such accountability helps define finitary truth assignments that differentiate human reasoning from mechanistic reasoning in arithmetic by identifying two, hitherto unsuspected, Tarskian interpretations of the first order Peano Arithmetic PA, under both of which the PA axioms interpret as finitarily true over the domain of the natural numbers, and the PA rules of inference preserve such truth finitarily over .

**4. The ambit of human reasoning vis à vis the ambit of mechanistic reasoning**

One corresponds to the classical, non-finitary, putative standard interpretation of PA over , and can be treated as circumscribing the ambit of human reasoning about ‘true’ arithmetical propositions.

The other corresponds to a finitary interpretation of PA over that circumscibes the ambit of mechanistic reasoning about ‘true’ arithmetical propositions, and establishes the long-sought for consistency of PA (see *this post*); which establishes PA as a mathematical language of unambiguous communication for the mathematical representation of physical phenomena.

**5. The significance of such accountability for the mathematical representation of physical phenomena**

The significance of such a distinction for the mathematical representation of physical phenomena is highlighted in *this paper* that was presented on 26th June at the workshop on *Emergent Computational Logics* at UNILOG’2015, 5th World Congress and School on Universal Logic, Istanbul, Turkey, where we showed how some of the seemingly paradoxical elements of quantum mechanics may resolve if we define:

**Quantum phenomena**: *A phenomena is a quantum phenomena if, and only if, it obeys laws that can only be represented mathematically by functions that are algorithmically verifiable but not algorithmically computable.*

**6. The mathematical representation of quantum phenomena that is determinate but not predictable**

By considering the properties of Gödel’s function (see 4.1 on p.8 of *this preprint*)—which allows us to strongly represent any non-terminating sequence of natural numbers by an arithmetical function—it would follow that, since any projection of the future values of a quantum-phenomena-associated, algorithmically verifiable, function is consistent with an infinity of algorithmically computable functions, all of whose past values are identical to the algorithmically verifiable past values of the function, the phenomena itself would be essentially unpredicatable if it cannot be represented by an algorithmically computable function.

However, since the algorithmic verifiability of any quantum phenomena shows that it is mathematically determinate, it follows that the physical phenomena itself must observe determinate laws.

**7. Such representation does not need to admit multiverses**

Hence (contrary to any interpretation that admits unverifiable multiverses) only one algorithmically computable extension of the function is consistent with the law determining the behaviour of the phenomena, and each possible extension must therefore be associated with a probability that the next observation of the phenomena is described by that particular extension.

**8. Is the probability of the future behaviour of quantum phenomena definable by an algorithmically computable function?**

The question arises: Although we cannot represent quantum phenomena explicitly by an algorithmically computable function, does the phenomena lend itself to an algorithmically computable probability of its future behaviour in the above sense?

**9. Can primes yield a heuristic model of quantum behaviour?**

We now show that the distribution of prime numbers denoted by the arithmetical prime counting function is a quantum phenomena in the above sense, with a well-defined probability function that is algorithmically computable.

**10. Two prime probabilities**

We consider the two probabilities:

(i) The probability of selecting a number that has the property of being prime from a given set of numbers;

*Example 1*: I have a bag containing numbers in which there are twice as many composites as primes. What is the probability that the first number you blindly pick from it is a prime. This is the basis for setting odds in games such as roulette.

(ii) The probability of determining a proper factor of a given number .

*Example 2*: I give you a -digit combination lock along with a -digit number . The lock only opens if you set the combination to a proper factor of which is greater than . What is the probability that the first combination you try will open the lock. This is the basis for RSA encryption, which provides the cryptosystem used by many banks for securing their communications.

**11. The probability of a randomly chosen number from the set of natural numbers is not definable**

Clearly the probability of selecting a number that has the property of being prime from a given set of numbers is definable if the precise proportion of primes to non-primes in is definable.

However if is the set of all integers, and we cannot define a precise ratio of primes to composites in , but only an order of magnitude such as , then equally obviously cannot be defined in (see Chapter 2, p.9, Theorem 2.1, *here*).

**12. The prime divisors of a natural number are independent**

Now, the following paper proves , since it shows that whether or not a prime divides a given integer is independent of whether or not a prime divides :

*Why Integer Factorising cannot be polynomial time*

We thus have that , with a binomial standard deviation.

Hence, even though we cannot define the probability of selecting a number from the set of all natural numbers that has the property of being prime, can be treated as the putative non-heuristic probability that a given is a prime.

**13. The distribution of primes is a quantum phenomena**

The distribution of primes is thus determinate but unpredictable, since it is representable by the algorithmically verifiable but not algorithmically computable arithmetical number-theoretic function , where is the ‘th prime.

The Prime Number Generating Theorem and the Trim and Compact algorithms detailed in *this 1964 investigation* illustrate why the arithmetical number-theoretic function is algorithmically verifiable but not algorithmically computable (see also *this Wikipedia proof* that no non-constant polynomial function with integer coefficients exists that evaluates to a prime number for all integers .).

Moreover, although the distribution of primes is a quantum phenomena with probabilty , it is easily seen (see Figs. 7-11 on pp.23-26 of *this preprint*) that the generation of the primes is algorithmically computable.

**14. Why the universe may be algorithmically computable**

By analogy, this suggests that although the measurable values of some individual properties of particles in the universe over time may represent a quantum phenomena, the universe itself may be algorithmically computable if the laws governing the generation of all the particles in the universe over time are algorithmically computable.

**A. A mathematical physicist’s conception of thinking about infinity in consistent ways**

John Baez is a mathematical physicist, currently working at the math department at U. C. Riverside in California, and also at the Centre for Quantum Technologies in Singapore.

Baez is not only academically active in the areas of network theory and information theory, but also socially active in promoting and supporting the Azimuth Project, which is a platform for scientists, engineers and mathematicians to collaboratively do something about the global ecological crisis.

In a recent post—*Large Countable Ordinals (Part 1)*—on the Azimuth Blog, Baez confesses to a passionate urge to write a series of blogs—that might even eventually yield a book—about the infinite, reflecting both his fascination with, and frustration at, the challenges involved in formally denoting and talking meaningfully about *different sizes of infinity*:

“I love the infinite. … It may not exist in the physical world, but we can set up rules to think about it in consistent ways, and then it’s a helpful concept. … Cantor’s realization that there are different sizes of infinity is … part of the everyday bread and butter of mathematics.”

**B. Why thinking about infinity in a consistent way must be constrained by an objective, evidence-based, perspective**

I would cautiously submit however that (as I briefly argue in this blogpost), before committing to any such venture, whether we *can* think about the “*different sizes of infinity*” in “*consistent ways*“, and to what extent such a concept is “*helpful*“, are issues that may need to be addressed from an objective, evidence-based, computational perspective in addition to the conventional self-evident, intuition-based, classical perspective towards formal axiomatic theories.

**C. Why we cannot conflate the behaviour of Goodstein’s sequence in Arithmetic with its behaviour in Set Theory**

Let me suggest why by briefly reviewing—albeit unusually—the usual argument of Goodstein’s Theorem (see here) that every Goodstein sequence over the natural numbers must terminate finitely.

**1. The Goodstein sequence over the natural numbers**

First, let , be the terms of the Goodstein sequence for over the domain of the natural numbers, where is the base in which the hereditary representation of the ‘th term of the sequence is expressed.

**Some properties of Goodstein’s sequence over the natural numbers**

We note that, for any natural number , R. L. Goodstein uses the properties of the hereditary representation of to construct a sequence of natural numbers by an unusual, but valid, algorithm.

**Hereditary representation**: The representation of a number as a sum of powers of a base , followed by expression of each of the exponents as a sum of powers of , etc., until the process stops. For example, we may express the hereditary representations of in base and base as follows:

We shall ignore the peculiar manner of constructing the individual members of the Goodstein sequence, since these are not germane to understanding the essence of Goodstein’s argument. We need simply accept for now that is well-defined over the structure of the natural numbers, and has, for instance, the following properties:

If we replace the base in each term of the sequence by , we arrive at a corresponding sequence of, say, Goodstein’s functions for over the domain of the natural numbers.

Where, for instance:

It is fairly straightforward (see here) to show that, for all :

Either , or .

Clearly terminates in if, and only if, there is a natural number such that, for any , we have either that or that .

However, since we cannot, equally clearly, *immediately* conclude from the axioms of the first-order Peano Arithmetic PA that such a must exist merely from the definition of the sequence in , we cannot *immediately* conclude from the above argument that must terminate finitely in .

**2. The Goodstein sequence over the finite ordinal numbers**

Second, let , be the terms of the Goodstein sequence over the domain of the finite ordinal numbers , where is Cantor’s least transfinite ordinal.

If we replace the base in each term of the sequence by , where ranges over all ordinals upto , it is again fairly straightforward to show that:

Either , or .

Clearly, in this case too, terminates in if, and only if, there is an ordinal such that, for all finite , we have either that , or that .

**3. Goodstein’s argument over the transfinite ordinal numbers**

If we, however, let then—since the ZF axioms do not admit an infinite descending set of ordinals—it now ** immediately follows** that we cannot have:

for all .

Hence must terminate finitely in , since we must have that for some finite .

**4. The intuitive justification for Goodstein’s Theorem**

The *intuitive* justification—which must *implicitly* underlie any formal argument—for Goodstein’s Theorem then is that, since the finite ordinals can be meta-mathematically * seen* to be in a correspondence with the natural numbers, we can conclude from (2) above that every Goodstein sequence over the natural numbers

*must also*terminate finitely.

**5. The fallacy in Goodstein’s argument**

The fallacy in this conclusion is exposed if we note that, by (2), must terminate finitely in **even if*** did not* terminate in !

**6. Why we need to heed Skolem’s cautionary remarks**

Clearly, if we heed Skolem’s cautionary remarks (reproduced here) about unrestrictedly corresponding conclusions concerning elements of different formal systems, then we can validly only conclude that the relationship of ‘terminating finitely’ with respect to the ordinal inequality ‘‘ over an infinite set of finite ordinals in any *putative* interpretation of a first order Ordinal Arithmetic cannot be obviously corresponded to the relationship of ‘terminating finitely’ with respect to the natural number inequality ‘‘ over an infinite set of natural numbers in any interpretation of PA.

**7. The significance of Skolem’s qualification**

The significance of Skolem’s qualification is highlighted if we note that we cannot force PA to admit a constant denoting a ‘completed infinity’, such as Cantor’s least ordinal , into either PA or into any interpretation of PA without inviting inconsistency.

(The proof is detailed in Theorem 4.1 on p.7 of this preprint. See also this blogpage).

**8. PA is finitarily consistent**

Moreover, the following paper, due to appear in the December 2016 issue of *Cognitive Systems Research*, gives a finitary proof of consistency for the first-order Peano Arithmetic PA:

**9. Why ZF cannot have an evidence-based interpretation**

It also follows from the above-cited CSR paper that ZF axiomatically postulates the existence of an infinite set which cannot be evidenced as true even under any *putative* interpretation of ZF.

**10. The appropriate conclusion of Goodstein’s argument**

So, if a ‘completed infinity’ cannot be introduced as a constant into PA, or as an element into the domain of any interpretation of PA, without inviting inconsistency, it would follow in Russell’s colourful phraseology that the appropriate conclusion to be drawn from Goodstein’s argument is that:

(i) In the first-order Peano Arithmetic PA we always know what we are talking about, even though we may not always know whether it is true or not;

(ii) In the first-order Set Theory we never know what we are talking about, so the question of whether or not it is true is only of notional interest.

Which raises the issue not only of whether we *can* think about the *different sizes of infinity* in a consistent way, but also to what extent we may need to justify that such a concept is *helpful* to an emerging student of mathematics.

**The Unexplained Intellect: Complexity, Time, and the Metaphysics of Embodied Thought**

*Christopher Mole* is an associate professor of philosophy at the University of British Columbia, Vancouver. He is the author of *Attention is Cognitive Unison: An Essay in Philosophical Psychology* (OUP, 2011), and *The Unexplained Intellect: Complexity, Time, and the Metaphysics of Embodied Thought* (Routledge, 2016).

In his preface to *The Unexplained Intellect*, Mole emphasises that his book is an attempt to provide arguments for (amongst others) the three theses that:

(i) “Intelligence might become explicable if we treat intelligence thought as if it were some sort of computation”;

(ii) “The importance of the rapport between an organism and its environment must be understood from a broadly computational perspective”;

(iii) “ our difficulties in accounting for our psychological orientation with respect to time are indications of the need to shift our philosophical focus away from mental *states*—which are altogether too static—and towards a theory of the mind in which it is *dynamic* mental entities that are taken to be metaphysically foundational”.

Mole explains at length his main claims in *The Unexplained Intellect*—and the cause that those claims serve—in a lucid and penetrating, VI-part, series of invited posts in *The Brains blog* (a leading forum for work in the philosophy and science of mind that was founded in 2005 by *Gualtiero Piccinini*, and has been administered by *John Schwenkler* since late 2011).

In these posts, Mole seeks to make the following points.

**I: The Unexplained Intellect: The mind is not a hoard of sentences**

We do not currently have a satisfactory account of how minds could be had by material creatures. If such an account is to be given then every mental phenomenon will need to find a place within it. Many will be accounted for by relating them to other things that are mental, but there must come a point at which we break out of the mental domain, and account for some things that are mental by reference to some that are not. It is unclear where this break out point will be. In that sense it is unclear which mental entities are, metaphysically speaking, the most fundamental.

At some point in the twentieth century, philosophers fell into the habit of writing as if the most fundamental things in the mental domain are mental states (where these are thought of as states having objective features of the world as their truth-evaluable contents). This led to a picture in which the mind was regarded as something like a hoard of sentences. The philosophers and cognitive scientists who have operated with this picture have taken their job to be telling us what sort of content these mental sentences have, how that content is structured, how the sentences come to have it, how they get put into and taken out of storage, how they interact with one another, how they influence behaviour, and so on.

This emphasis on states has caused us to underestimate the importance of non-static mental entities, such as inferences, actions, and encounters with the world. If we take these dynamic entities to be among the most fundamental of the items in the mental domain, then — I argue — we can avoid a number of philosophical problems. Most importantly, we can avoid a picture in which intelligent thought would be beyond the capacities of any physically implementable system.

**II: The Unexplained Intellect: Computation and the explanation of intelligence**

A lot of philosophers think that consciousness is what makes the mind/body problem interesting, perhaps because they think that consciousness is the only part of that problem that remains wholly philosophical. Other aspects of the mind are taken to be explicable by scientific means, even if explanatorily adequate theories of them remain to be specified.

I’ll remind the reader of computability theory’s power, with a view to indicating how it is that the discoveries of theoretical computer scientists place constraints on our understanding of what intelligence is, and of how it is possible.

**III: The Unexplained Intellect: The importance of computability**

If we found that we had been conceiving of intelligence in such a way that intelligence could not be modelled by a Turing Machine, our response should not be to conclude that some alternative must be found to a ‘Classically Computational Theory of the Mind’. To think only that would be to underestimate the scope of the theory of computability. We should instead conclude that, on the conception in question, intelligence would (be) *absolutely* inexplicable. This need to avoid making intelligence inexplicable places constraints on our conception of what intelligence is.

**IV: The Unexplained Intellect: Consequences of imperfection**

The lesson to be drawn is that, if we think of intelligence as involving the maintenance of satisfiable beliefs, and if we think of our beliefs as corresponding to a set of representational states, then our intelligence would depend on a run of good luck the chances of which are unknown.

My suggestion is that we can reach a more explanatorily satisfactory conception of intelligence if we adopt a dynamic picture of the mind’s metaphysical foundations.

**V: The Unexplained Intellect: The importance of rapport**

I suggest that something roughly similar is true of us. We are not guaranteed to have satisfiable beliefs, and sometimes we are rather bad at avoiding unsatisfiability, but such intelligence as we have is to be explained by reference to the rapport between our minds and the world.

Rather than starting from a set of belief states, and then supposing that there is some internal process operating on these states that enables us to update our beliefs rationally, we should start out by accounting for the dynamic processes through which the world is epistemically encountered. Much as the three-colourable map generator reliably produces three-colourable maps because it is essential to his map-making procedure that borders appear only where they will allow for three colorability, so it is essential to what it is for a state to be a belief that beliefs will appear only if there is some rapport between the believer and the world. And this rapport — rather than any internal processing considered in isolation from it — can explain the tendency for our beliefs to respect the demands of intelligence.

**VI: The Unexplained Intellect: The mind’s dynamic foundations**

memory is essentially a form of epistemic retentiveness: One’s present knowledge counts as an instance of memory when and only when it was attained on the basis of an epistemic encounter that lies in one’s past. One can epistemically encounter a *proposition* as the conclusion of an argument, and so can encounter it before the occurrence of any event to which it pertains, but one cannot encounter an *event* in that way. In the resulting explanation of memory’s temporal asymmetry, it is the dynamic events of epistemic encountering to which we must make reference. These encounters, and not the knowledge states to which they lead, do the lion’s share of the explanatory work.

**A: Simplifying Mole’s perspective**

It may help simplify Mole’s thought-provoking perspective if we make an arbitrary distinction between:

(i) The mind of an applied scientist, whose primary concern is our sensory observations of a ‘common’ external world;

(ii) The mind of a philosopher, whose primary concern is abstracting a coherent perspective of the external world from our sensory observations; and

(iii) The mind of a mathematician, whose primary concern is adequately expressing such abstractions in a formal language of unambiguous communication.

My understanding of Mole’s thesis, then, is that:

(a) although a mathematician’s mind may be capable of defining the ‘truth’ value of some logical and mathematical propositions without reference to the external world,

(b) the ‘truth’ value of any logical or mathematical proposition that purports to represent any aspect of the real world must be capable of being evidenced objectively to the mind of an applied scientist; and that,

(c) of the latter ‘truths’, what should interest the mind of a philosopher is whether there are some that are ‘knowable’ completely independently of the passage of time, and some that are ‘knowable’ only partially, or incrementally, with the passage of time.

**B. Support for Mole’s thesis**

It also seems to me that Mole’s thesis implicitly subsumes, or at the very least echoes, the belief expressed by Chetan R. Murthy (‘An Evaluation Semantics for Classical Proofs‘, Proceedings of Sixth IEEE Symposium on Logic in Computer Science, pp. 96-109, 1991; also Cornell TR 91-1213):

“It is by now folklore … that one can view the values of a simple functional language as specifying evidence for propositions in a constructive logic …”

If so, the thesis seems significantly supported by the following paper that is due to appear in the December 2016 issue of ‘Cognitive Systems Research’:

The CSR paper implicitly suggests that there are, indeed, (only?) two ways of assigning ‘true’ or ‘false’ values to any mathematical description of real-world events.

**C. Algorithmic computability**

First, a number theoretical relation is algorithmically computable if, and only if, there is an algorithm that can provide objective evidence (cf. ibid Murthy 91) for deciding the truth/falsity of each proposition in the denumerable sequence .

(We note that the concept of `algorithmic computability’ is essentially an expression of the more rigorously defined concept of `realizability’ on p.503 of Stephen Cole Kleene’s ‘*Introduction to Metamathematics*‘, North Holland Publishing Company, Amsterdam.)

**D. Algorithmic verifiability**

Second, a number-theoretical relation is algorithmically verifiable if, and only if, for any given natural number , there is an algorithm which can provide objective evidence for deciding the truth/falsity of each proposition in the finite sequence .

We note that algorithmic computability implies the existence of an algorithm that can finitarily decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions, whereas algorithmic verifiability does not imply the existence of an algorithm that can finitarily decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions.

The following theorem (Theorem 2.1, p.37 of the *CSR paper*) shows that although every algorithmically computable relation is algorithmically verifiable, the converse is not true:

**Theorem**: There are number theoretic functions that are algorithmically verifiable but not algorithmically computable.

**E. The significance of algorithmic ‘truth’ assignments for Mole’s theses**

The significance of such algorithmic ‘truth’ assignments for Mole’s theses is that:

*Algorithmic computability*—reflecting the ambit of classical Newtonian mechanics—characterises natural phenomena that are determinate and predictable.

Such phenomena are describable by mathematical propositions that can be termed as ‘knowable completely’, since at any point of time they are algorithmically computable as ‘true’ or ‘false’.

Hence both their past and future behaviour is completely computable, and their ‘truth’ values are therefore ‘knowable’ independent of the passage of time.

*Algorithmic verifiability*—reflecting the ambit of Quantum mechanics—characterises natural phenomena that are determinate but unpredictable.

Such phenomena are describable by mathematical propositions that can only be termed as ‘knowable incompletely’, since at any point of time they are only algorithmically verifiable, but not algorithmically computable, as ‘true’ or ‘false’

Hence, although their past behaviour is completely computable, their future behaviour is not completely predictable, and their ‘truth’ values are not independent of the passage of time.

**F. Where Mole’s implicit faith in the adequacy of set theoretical representations of natural phenomena may be misplaced**

It also seems to me that, although Mole’s analysis justifiably holds that the:

“ importance of the rapport between an organism and its environment”

has been underacknowledged, or even overlooked, by existing theories of the mind and intelligence, it does not seem to mistrust, and therefore ascribe such underacknowledgement to any lacuna in, the mathematical and epistemic foundations of the formal language in which almost all descriptions of real-world events are currently sought to be expressed, which is the language of the set theory ZF.

**G. Any claim to a physically manifestable ‘truth’ must be objectively accountable**

Now, so far as applied science is concerned, history teaches us that the ‘truth’ of any mathematical proposition that purports to represent any aspect of the external world must be capable of being evidenced objectively; and that such ‘truths’ must not be only of a subjective and/or revelationary nature which may require truth-certification by evolutionarily selected prophets.

(Not necessarily religious—see, for instance, Melvyn B. Nathanson’s remarks, “*Desperately Seeking Mathematical Truth*“, in the Opinion piece in the August 2008 Notices of the American Mathematical Society, Vol. 55, Issue 7.)

The broader significance of seeking objective accountability is that it admits the following (admittedly iconoclastic) distinction between the two fundamental mathematical languages:

1. The first-order Peano Arithmetic PA as the language of science; and

2. The first-order Set Theory ZF as the language of science fiction.

It is a distinction that is faintly reflected in Stephen G. Simpson’s more conservative perspective in his paper ‘*Partial Realizations of Hilbert’s Program*‘ (#6.4, p.15):

“Finitistic reasoning (my read: ‘First-order Peano Arithmetic PA’) is unique because of its clear real-world meaning and its indispensability for all scientific thought. Nonfinitistic reasoning (my read: ‘First-order Set Theory ZF’) can be accused of referring not to anything in reality but only to arbitrary mental constructions. Hence nonfinitistic mathematics can be accused of being not science but merely a mental game played for the amusement of mathematicians.”

The distinction is supported by the formal argument (detailed in the above-cited CSR paper) that:

(i) PA has two, hitherto unsuspected, evidence-based interpretations, the first of which can be treated as circumscribing the ambit of human reasoning about ‘true’ arithmetical propositions; and the second can be treated as circumscribing the ambit of mechanistic reasoning about ‘true’ arithmetical propositions.

What this means is that the language of arithmetic—formally expressed as PA—can provide all the foundational needs for all practical applications of mathematics in the physical sciences. This was was the point that I sought to make—in a limited way, with respect to quantum phenomena—in the following paper presented at Unilog 2015, Istanbul last year:

(Presented on 26’th June at the workshop on ‘*Emergent Computational Logics*’ at *UNILOG’2015, 5th World Congress and School on Universal Logic*, 20th June 2015 – 30th June 2015, Istanbul, Turkey.)

(ii) Since ZF axiomatically postulates the existence of an infinite set that cannot be evidenced (and which cannot be introduced as a constant into PA, or as an element into the domain of any interpretation of PA, without inviting inconsistency—see Theorem 1 in 4 of *this post*), it can have no evidence-based interpretation that could be treated as circumscribing the ambit of either human reasoning about ‘true’ set-theoretical propositions, or that of mechanistic reasoning about ‘true’ set-theoretical propositions.

The language of set theory—formally expressed as ZF—thus provides the foundation for abstract structures that—although of possible interest to philosophers of science—are only mentally conceivable by mathematicians subjectively, and have no verifiable physical counterparts, or immediately practical applications of mathematics, that can materially impact on the study of physical phenomena.

The significance of this distinction can be expressed more vividly in Russell’s phraseology as:

(iii) In the first-order Peano Arithmetic PA we always know what we are talking about, even though we may not always know whether it is true or not;

(iv) In the first-order Set Theory we never know what we are talking about, so the question of whether or not it is true is only of fictional interest.

**H. The importance of Mole’s ‘rapport’**

Accordingly, I see it as axiomatic that the relationship between an evidence-based mathematical language and the physical phenomena that it purports to describe, must be in what Mole terms as ‘rapport’, if we view mathematics as a set of linguistic tools that have evolved:

(a) to adequately abstract and precisely express through human reasoning our observations of physical phenomena in the world in which we live and work; and

(b) unambiguously communicate such abstractions and their expression to others through objectively evidenced reasoning in order to function to the maximum of our co-operative potential in acieving a better understanding of physical phenomena.

This is the perspective that I sought to make in the following paper presented at Epsilon 2015, Montpellier, last June, where I argue against the introduction of ‘unspecifiable’ elements (such as completed infinities) into either a formal language or any of its evidence-based interpretations (in support of the argument that since a completed infinity cannot be evidence-based, it must therefore be dispensible in any purported description of reality):

(Presented on 10th June at the Epsilon 2015 workshop on ‘*Hilbert’s Epsilon and Tau in Logic, Informatics and Linguistics*’, 10th June 2015 – 12th June 2015, University of Montpellier, France.)

**I. Why mathematical reasoning must reflect an ‘agnostic’ perspective**

Moreover, from a non-mathematician’s perspective, a Propertarian like *Curt Doolittle* would seem justified in his critique (comment of June 2, 2016 in *this Quanta review*) of the seemingly ‘mystical’ and ‘irrelevant’ direction in which conventional interpretations of Hilbert’s ‘theistic’ and Brouwer’s ‘atheistic’ reasoning appear to have pointed mainstream mathematics for, as I argue informally in an *earlier post*, the ‘truths’ of any mathematical reasoning must reflect an ‘agnostic’ perspective.

**A new proof?**

An interesting *review* by Natalie Wolchover on May 24, 2016, in the on-line magazine *Quanta*, reports that:

“With a surprising new proof, two young mathematicians have found a bridge across the finite-infinite divide, helping at the same time to map this strange boundary.

The boundary does not pass between some huge finite number and the next, infinitely large one. Rather, it separates two kinds of mathematical statements: ‘finitistic’ ones, which can be proved without invoking the concept of infinity, and ‘infinitistic’ ones, which rest on the assumption — not evident in nature — that infinite objects exist.”

More concretely:

“In the *new proof*, Keita Yokoyama, 34, a mathematician at the *Japan Advanced Institute of Science and Technology*, and Ludovic Patey, 27, a computer scientist from *Paris Diderot University*, pin down the logical strength of — but not at a level most people expected. The theorem is ostensibly a statement about infinite objects. And yet, Yokoyama and Patey found that it is ‘finitistically reducible’: It’s equivalent in strength to a system of logic that does not invoke infinity. This result means that the infinite apparatus in can be wielded to prove new facts in finitistic mathematics, forming a surprising bridge between the finite and the infinite.”

**The proof appeals to properties of transfinite ordinals**

My immediate reservation—after a brief glance at the formal definitions in 1.6 on p.6 of the *Yokoyama-Patey paper*—was that the domain of the structure in which the formal result is proved necessarily contains at least Cantor’s smallest transfinite ordinal , whereas the result is apparently sought to be ‘finitistically reducible’ (as considered by Stephen G. Simpson in an absorbing survey of *Partial Realizations of Hilbert’s Program*), in the sense of being not only finitarily provable, but interpretable in, and applicable to, finite structures (such as that of the natural numbers) whose domains may not contain (nor, in some cases, even admit—see Theorem 1 in 4.1 of *this post*) an infinite ‘number’.

Prima facie, the implicit assumption here (see also *this post*) seems to reflect, for instance, the conventional wisdom that every proposition which is formally provable about the finite, set-theoretically defined ordinals (necessarily assumed consistent with an axiom of infinity), must necessarily interpret as a true proposition about the natural numbers.

**Why we cannot ignore Skolem’s cautionary remarks**

In this conventional wisdom—by terming it as Skolem’s Paradox—both accepts and implicitly justifies ignoring Thoraf Skolem’s cautionary remarks about unrestrictedly corresponding putative mathematical relations and entities across domains of different axiom systems.

(*Thoralf Skolem*. 1922. *Some remarks on axiomatized set theory*. Text of an address delivered in Helsinki before the *Fifth Congress of Scandinavian Mathematicians*, 4-7 August 1922. In Jean van Heijenoort. 1967. Ed. *From Frege to Gödel: A source book in Mathematical Logic, 1878 – 1931*. Harvard University Press, Cambridge, Massachusetts.)

However, that the assumption is fragile is seen since, without such an assumption, we can only conclude from, say, Goodstein’s argument that a Goodstein sequence defined over the finite ZF ordinals must terminate finitely even if the corresponding Goodstein sequence over the natural numbers does not terminate (see Theorem 2 of this unpublished investigation)!

(*R. L. Goodstein*. 1944. *On the Restricted Ordinal Theorem*. In the *Journal of Symbolic Logic* 9, 33-41.)

**A remarkable exposition of Ramsey’s Theorem**

The Yokoyama-Patey proof invites other reservations too.

In a comment—remarkable for its clarity of exposition—academically minded ‘Peter’ illustrates Ramsey’s Theorem as follows:

Something that might help to understand what’s going on here is to start one level lower: Ramsey’s theorem for singletons () says that however you colour the integers with two colours (say red and blue), you are guaranteed to find an infinite monochromatic subset. To see this is true, simply go along the integers starting from and put them into the red or the blue bag according to their colour. Since in each step you increase the size of one or the other bag, without removing anything, you end up with an infinite set. This is a finitistic proof: it never really uses infinity, but it tells you how to construct the first part of the ‘infinite set’.

Now let’s try the standard proof for , pairs. This time we will go along the integers twice, and we will throw away a lot as we go.

The first time, we start at . Because there are infinitely many numbers bigger than , each of which makes a pair with and each of which pairs is coloured either red or blue, there are either infinitely many red pairs with or infinitely many blue pairs (note: this is really using ). I write down under ‘red’ or ‘blue’ depending on which it turned out to be (in case both sets of pairs are infinite, I’ll write red just to break a tie), then I cross out all the numbers bigger than which make the ‘wrong colour’ pair with .

Now I move on to the next number, say , I didn’t cross out, and I look at all the pairs it makes with the un-crossed-out numbers bigger than it. There are still infinitely many, so either the red pairs or the blue pairs form an infinite set (or both). I write down red or blue below as before, and again cross out all the number bigger than which make a wrong colour pair with . And I keep going like this; because everything stays infinite I never get stuck.

After an infinitely long time, I can go back and look at all the numbers which I did not cross out – there is an infinite list of them. Under each is written either ‘red’ or ‘blue’, and if under (say) number the word ‘red’ is written, then forms red pairs with all the un-crossed-out numbers bigger than . Now (using again) either the word ‘red’ or the word ‘blue’ was written infinitely often, so I can pick an infinite set of numbers under which I wrote either always ‘red’ or always ‘blue’. Suppose it was always ‘red’; then if and are any two numbers in the collection I picked, the pair will be red – this is because one of and , say , is smaller, and by construction all the pairs from to bigger un-crossed-out numbers, including , are red. If it were always blue, by the same argument I get an infinite set where all pairs are blue.

What is different here to the first case? The difference is that in order to say whether I should write ‘red’ or ‘blue’ under (or any other number) in the first step, I have to ‘see’ the whole infinite set. I could look at a lot of these numbers and make a guess – but if the guess turns out to be wrong then it means I made a mistake at all the later steps of the process too; everything falls apart. This is not a finitistic proof – according to some logicians, you should be worried that it might somehow be wrong. Most mathematicians will say it is perfectly fine though.

Moving up to , the usual proof is an argument that looks quite a lot like the argument, except that instead of using in the ‘first pass’ it uses . All fine; we believe , so no problem. But now, when you want to write down ‘red’ or ‘blue under in this ‘first pass’ you have to know something more complicated about all the triples using ; you want to know if you can find an infinite set such that any pair in forms a red triple with . If not, tells you that you can find an infinite set such that any pair in forms a _blue_ triple with . Then you would cross off everything not in , and keep going as with . The proof doesn’t really get any harder for the general case (or indeed changing the number of colours to something bigger than ). If you’re happy with infinity, there’s nothing new to see here. If not – well, these proofs have you recursively using more and infinitely more appeals to something infinite as you increase k, which is not a happy place to be in if you don’t like infinity.

**Implicit assumptions in Yokoyama-Patey’s argument**

Peter’s clarity of exposition makes it easier to see that, in order to support the conclusion that their proof of Ramsey’s Theorem for pairs is ‘finitistically reducible’, Yokoyama-Patey must assume:

(i) that ZFC is consistent, and therefore has a Tarskian interpretation in which the ‘truth’ of a ZFC formula can be evidenced;

(ii) that their result must be capable of an evidence-based Tarskian interpretation over the ‘finitist’ structure of the natural numbers.

As to (i), Peter has already pointed out in his final sentence that there are (serious?) reservations to accepting that the ZF axiom of infinity can have any evidence-based interpretation.

As to (ii), Ramsey’s Theorem is an existensial ZFC formula of the form (whose proof must appeal to an axiom of choice).

Now in ZF (as in any first-order theory that appeals to the standard first-order logic FOL) the formula is merely an abbreviation for the formula .

So, under any consistent ‘finitistically reducible’ interpretation of such a formula, there must be a unique, unequivocal, evidence-based Tarskian interpretation of over the domain of the natural numbers.

Now, if we are to avoid intuitionistic objections to the admitting of ‘unspecified’ natural numbers in the definition of quantification under any evidence-based Tarskian interpretation of a formal system of arithmetic, we are faced with the ambiguity where the questions arise:

(a) Is the to be interpreted constructively as:

For any natural number , there is an algorithm (say, a deterministic Turing machine) which evidences that are all true; or,

(b) is the formula to be interpreted finitarily as:

There is a single algorithm (say, a deterministic Turing machine) which evidences that, for any natural number is true, i.e., each of is true?

As Peter has pointed out in his analysis of Ramsey’s Theorem for pairs, the proof of the Theorem necessitates that:

“I have to ‘see’ the whole infinite set. I could look at a lot of these numbers and make a guess – but if the guess turns out to be wrong then it means I made a mistake at all the later steps of the process too; everything falls apart. This is not a finitistic proof – according to some logicians, you should be worried that it might somehow be wrong.”

In other words, Yokoyama-Patey’s conclusion (that their new proof is ‘finitistically reducible’) would only hold if they have established (b) somewhere in their proof; but a cursory reading of their paper does not suggest this to be the case.

In a recent paper *A Relatively Small Turing Machine Whose Behavior Is Independent of Set Theory*, authors Adam Yedidia and Scott Aaronson argue upfront in their Introduction that:

“*Like any axiomatic system capable of encoding arithmetic, ZFC is constrained by Gödel’s two incompleteness theorems. The first incompleteness theorem states that if ZFC is consistent (it never proves both a statement and its opposite), then ZFC cannot also be complete (able to prove every true statement). The second incompleteness theorem states that if ZFC is consistent, then ZFC cannot prove its own consistency. Because we have built modern mathematics on top of ZFC, we can reasonably be said to have assumed ZFC’s consistency.*“

The question arises:

*How reasonable is it to build modern mathematics on top of a Set Theory such as ZF?*

Some immediate points to ponder upon (see also reservations expressed by Stephen G. Simpson in *Logic and Mathematics* and in *Partial Realizations of Hilbert’s Program*):

**1. “Like any axiomatic system capable of encoding arithmetic, …”**

The implicit assumption here that every ZF formula which is provable about the finite ZF ordinals must necessarily interpret as a true proposition about the natural numbers is fragile since, without such an assumption, we can only conclude from Goodstein’s argument (see Theorem 1.1 here) that a Goodstein sequence defined over the finite ZF ordinals must terminate even if the corresponding Goodstein sequence over the natural numbers does not terminate!

**2. “ZFC is constrained by Gödel’s two incompleteness theorems. The first incompleteness theorem states that if ZFC is consistent (it never proves both a statement and its opposite), then ZFC cannot also be complete (able to prove every true statement). The second incompleteness theorem states that if ZFC is consistent, then ZFC cannot prove its own consistency.”**

The implicit assumption here is that ZF is -consistent, which implies that ZF is consistent and must therefore have an interpretation over some mathematically definable structure in which ZF theorems interpret as ‘true’.

The question arises: Must such ‘truth’ be capable of being evidenced objectively, or is it only of a subjective, revelationary, nature (which may require truth-certification by evolutionarily selected prophets—see Nathanson’s remarks as cited in *this post*)?

The significance of seeking objective accountbility is that in a paper, “*The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas’ Gödelian Thesis*“, which is due to appear in the December 2016 issue of *Cognitive Systems Research*, we show (see also *this post*) that the first-order Peano Arithmetic PA:

(i) is finitarily consistent; but

(ii) is *not* -consistent; and

(iii) has no ‘undecidable’ arithmetical proposition (whence both of Gödel’s Incompleteness Theorems hold vacuously so far as the arithmetic of the natural numbers is concerned).

**3. “Because we have built modern mathematics on top of ZFC, we can reasonably be said to have assumed ZFC’s consistency.”**

Now, one justification for such an assumption (without which it may be difficult to justify building modern mathematics on top of ZF) could be the belief that acquisition of set-theoretical knowledge by students of mathematics has some essential educational dimension.

If so, one should take into account not only the motivations of such a student for the learning of mathematics, but also those of a mathematician for teaching it.

This, in turn, means that both the content of the mathematics which is to be learnt (or taught), as well as the putative utility of such learning (or teaching) for a student (or teacher), merit consideration.

Considering content, I would iconoclastically submit that the least one may then need to accomodate is the following distinction between the two fundamental mathematical languages:

1. The first-order Peano Arithmetic PA, which is the language of science; and

2. The first-order Set Theory ZF, which is the language of science fiction.

A distinction that is reflected in Stephen G. Simpson’s more conservative perspective in *Partial Realizations of Hilbert’s Program* (6.4, p.15):

Finitistic reasoning (*read ‘First-order Peano Arithmetic PA’*) is unique because of its clear real-world meaning and its indispensability for all scientific thought. Nonfinitistic reasoning (*read ‘First-order Set Thyeory ZF’*) can be accused of referring not to anything in reality but only to arbitrary mental constructions. Hence nonfinitistic mathematics can be accused of being not science but merely a mental game played for the amusement of mathematicians.

Reason:

(i) PA has two, hitherto unsuspected, evidence-based interpretations (see *this post*), the first of which can be treated as circumscribing the ambit of human reasoning about `true’ arithmetical propositions; and the second can be treated as circumscribing the ambit of mechanistic reasoning about `true’ arithmetical propositions.

It is this language of arithmetic—formally expressed as PA—that provides the foundation for all practical applications of mathematics where the latter could be argued as having an essential educational dimension.

(ii) Since ZF axiomatically postulates the existence of an infinite set that cannot be evidenced (and which cannot be introduced as a constant into PA, or as an element into the domain of any interpretation of PA, without inviting inconsistency—see paragraph 4.2 of *this post*), it can have no evidence-based interpretation that could be treated as circumscribing the ambit of either human reasoning about `true’ set-theoretical propositions, or that of mechanistic reasoning about `true’ set-theoretical propositions.

The language of set theory—formally expressed as ZF—thus provides the foundation for abstract structures that are only mentally conceivable by mathematicians (subjectively?), and have no physical counterparts, or immediately practical applications of mathematics, which could meaningfully be argued as having an essential educational dimension.

The significance of this distinction can be expressed more vividly in Russell’s phraseology as:

(iii) In the first-order Peano Arithmetic PA we always know what we are talking about, even though we may not always know whether it is true or not;

(iv) In the first-order Set Theory we never know what we are talking about, so the question of whether or not it is true is only of fictional interest.

The distinction is lost when—as seems to be the case currently—we treat the acquisition of mathematical knowledge as necessarily including the body of essentially set-theoretic theorems—to the detriment, I would argue, of the larger body of aspiring students of mathematics whose flagging interest in acquiring such a wider knowledge in universities around the world reflects the fact that, for most students, their interests seem to lie primarily in how a study of mathematics can enable them to:

(a) adequately abstract and precisely express through human reasoning their experiences of the world in which they live and work; and

(b) unambiguously communicate such abstractions and their expression to others through objectively evidenced reasoning in order to function to the maximum of their latent potential in acieving their personal real-world goals.

In other words, it is not obvious how how any study of mathematics that has the limited goals (a) and (b) can have any essentially educational dimension that justifies the assumption that ZF is consistent.

**So where exactly does the buck stop?**

Another reason why Lucas and Penrose should not be faulted for continuing to believe in their well-known Gödelian arguments against computationalism lies in the lack of an adequate consensus on the concept of `effective computability’.

For instance, Boolos, Burgess and Jeffrey (2003: Computability and Logic, 4th ed.~CUP, p37) define a diagonal *halting* function, , any value of which can be computed effectively, although there is no single algorithm that can effectively compute .

“According to Turing’s Thesis, since is not Turing-computable, cannot be effectively computable. Why not? After all, although no Turing machine computes the function , we were able to compute at least its first few values, For since, as we have noted, the empty function we have . And it may seem that we can actually compute for any positive integer —if we don’t run out of time.”

… ibid. 2003. p37.

Now, the straightforward way of expressing this phenomenon should be to say that there are well-defined real numbers that are instantiationally computable, but not algorithmically computable.

Yet, following Church and Turing, such functions are labeled as effectively uncomputable!

The issue here seems to be that, when using language to express the abstract objects of our individual, and common, mental `concept spaces’, we use the word `exists’ loosely in three senses, without making explicit distinctions between them.

First, we may mean that an individually conceivable object exists, within a language , if it lies within the range of the variables of . The existence of such objects is necessarily derived from the grammar, and rules of construction, of the appropriate constant terms of the language—generally finitary in recursively defined languages—and can be termed as constructive in by definition.

Second, we may mean that an individually conceivable object exists, under a formal interpretation of in another formal language, say **′**, if it lies within the range of a variable of under the interpretation.

Again, the existence of such an object in **′** is necessarily derivable from the grammar, and rules of construction, of the appropriate constant terms of **′**, and can be termed as constructive in **′** by definition.

Third, we may mean that an individually conceivable object exists, in an interpretation of , if it lies within the range of an interpreted variable of , where is a Platonic interpretation of in an individual’s subjective mental conception (in Brouwer’s sense).

Clearly, the debatable issue is the third case.

So the question is whether we can—and, if so, how we may—correspond the Platonically conceivable objects of various individual interpretations of , say , **′**, **′****′**, …, unambiguously to the mathematical objects that are definable as the constant terms of .

If we can achieve this, we can then attempt to relate to a common external world and try to communicate effectively about our individual mental concepts of the world that we accept as lying, by consensus, in a common, Platonic, `concept-space’.

For mathematical languages, such a common `concept-space’ is implicitly accepted as the collection of individual intuitive, Platonically conceivable, perceptions—, **′**, **′****′**, …,—of the standard intuitive interpretation, say , of Dedekind’s axiomatic formulation of the Peano Postulates.

Reasonably, if we intend a language or a set of languages to be adequate, first, for the expression of the abstract concepts of collective individual consciousnesses, and, second, for the unambiguous and effective communication of those of such concepts that we can accept as lying within our common concept-space, then we need to give effective guidelines for determining the Platonically conceivable mathematical objects of an individual perception of that we can agree upon, by common consensus, as corresponding to the constants (mathematical objects) definable within the language.

Now, in the case of mathematical languages in standard expositions of classical theory, this role is sought to be filled by the Church-Turing Thesis (CT). Its standard formulation postulates that every number-theoretic function (or relation, treated as a Boolean function) of , which can intuitively be termed as effectively computable, is partial recursive / Turing-computable.

However, CT does not succeed in its objective completely.

Thus, even if we accept CT, we still cannot conclude that we have specified explicitly that the domain of consists of only constructive mathematical objects that can be represented in the most basic of our formal mathematical languages, namely, first-order Peano Arithmetic (PA) and Recursive Arithmetic (RA).

The reason seems to be that CT is postulated as a strong identity, which, prima facie, goes beyond the minimum requirements for the correspondence between the Platonically conceivable mathematical objects of and those of PA and RA.

“We now define the notion, already discussed, of an effectively calculable function of positive integers by identifying it with the notion of a recursive function of positive integers.”

… Church 1936: An unsolvable problem of elementary number theory, Am.~J.~Math., Vol.~58, pp.~345–363.

“The theorem that all effectively calculable sequences are computable and its converse are proved below in outline.

… Turing 1936: On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, ser.~2.~vol.~42 (1936–7), pp.~230–265.

This violation of the principle of Occam’s Razor is highlighted if we note (e.g., Gödel 1931: On undecidable propositions of Principia Mathematica and related systems I, Theorem VII) that, pedantically, every recursive function (or relation) is not shown as identical to a unique arithmetical function (or relation), but (*see the comment following Lemma 9 of this paper*) only as instantiationally equivalent to an infinity of arithmetical functions (or relations).

Now, the standard form of CT only postulates algorithmically computable number-theoretic functions of as effectively computable.

It overlooks the possibility that there may be number-theoretic functions and relations which are effectively computable / decidable instantiationally in a Tarskian sense, but not algorithmically.

**References**

**BBJ03** George S. Boolos, John P. Burgess, Richard C. Jeffrey. 2003. *Computability and Logic.* (4th ed). Cambridge University Press, Cambridge.

**Go31** Kurt Gödel. 1931. *On formally undecidable propositions of Principia Mathematica and related systems I.* Translated by Elliott Mendelson. In M. Davis (ed.). 1965. *The Undecidable.* Raven Press, New York. pp.5-38.

**Lu61** John Randolph Lucas. 1961. *Minds, Machines and Gödel.* In *Philosophy.* Vol. 36, No. 137 (Apr. – Jul., 1961), pp. 112-127, Cambridge University Press.

**Lu03** John Randolph Lucas. 2003. *The Gödelian Argument: Turn Over the Page.* In Etica & Politica / Ethics & Politics, 2003, 1.

**Lu06** John Randolph Lucas. 2006. *Reason and Reality.* Edited by Charles Tandy. Ria University Press, Palo Alto, California.

**Me64** Elliott Mendelson. 1964. *Introduction to Mathematical Logic.* Van Norstrand. pp.145-146.

**Pe90** Roger Penrose. 1990. *The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physics.* 1990, Vintage edition. Oxford University Press.

**Pe94** Roger Penrose. 1994. *Shadows of the Mind: A Search for the Missing Science of Consciousness.* Oxford University Press.

**Sc67** Joseph R. Schoenfield. 1967. *Mathematical Logic.* Reprinted 2001. A. K. Peters Ltd., Massachusetts.

**Ta33** Alfred Tarski. 1933. *The concept of truth in the languages of the deductive sciences.* In *Logic, Semantics, Metamathematics, papers from 1923 to 1938.* (p152-278). ed. John Corcoran. 1983. Hackett Publishing Company, Indianapolis.

**Wa63** Hao Wang. 1963. *A survey of Mathematical Logic.* North Holland Publishing Company, Amsterdam.

**An07a** Bhupinder Singh Anand. 2007. *The Mechanist’s challenge.* In *The Reasoner*, Vol(1)5 p5-6.

**An07b** … 2007. *Why we shouldn’t fault Lucas and Penrose for continuing to believe in the Gödelian argument against computationalism – I.* In *The Reasoner,* Vol(1)6 p3-4.

**An07c** … 2007. *Why we shouldn’t fault Lucas and Penrose for continuing to believe in the Gödelian argument against computationalism – II.* In *The Reasoner*, Vol(1)7 p2-3.

**An08** … 2008. *Can we really falsify truth by dictat?.* In *The Reasoner*, Vol(2)1 p7-8.

**An12** … 2012. *Evidence-Based Interpretations of PA.* In *Proceedings* of the Symposium on Computational Philosophy at the AISB/IACAP World Congress 2012-Alan Turing 2012, 2-6 July 2012, University of Birmingham, Birmingham, UK.

**A finitary arithmetical perspective on the forcing of non-standard models onto PA**

In the previous post we formally argued that the first order Peano Arithmetic PA is categorical from a finitary perspective (, Corollary 1).

We now argue that conventional wisdom which holds PA as essentially incomplete—and thus precludes categoricity—may appeal to finitarily fragile arguments (*as mentioned in this earlier post and in this preprint, now reproduced below*) for the existence of non-standard models of the first-order Peano Arithmetic PA.

Such wisdom ought, therefore, to be treated foundationally as equally fragile from a post-computationalist arithmetical perspective within classical logic, rather than accepted as foundationally sound relative to an ante-computationalist perspective of set theory.

**Post-computationalist doctrine**

“It is by now folklore … that one can view the *values* of a simple functional language as specifying *evidence* for propositions in a constructive logic …” (cf. Mu91).

** Introduction**

Once we accept as logically sound the set-theoretically based meta-argument ^{[1]} that the first-order Peano Arithmetic PA ^{[2]} can be forced—by an ante-computat- ionalist interpretation of the Compactness Theorem—into admitting non-standard models which contain an `infinite’ integer, then the set-theoretical properties ^{[3]} of the algebraic and arithmetical structures of such putative models should perhaps follow without serious foundational reservation.

**Compactness Theorem:** If every finite subset of a set of sentences has a model, then the whole set has a model (BBJ03. p.147).

However we shall argue that, from an arithmetical perspective, we can only conclude by the Compactness Theorem that if is the -theory of the standard model (interpretation) (Ka91, p.10-11), then we may consistently add to it the following as an additional—not necessarily independent—axiom:

.

Moreover, we shall argue that even though is algorithmically computable (Definition 2) as always true in the standard model (whence all of its instances are in ) we cannot conclude by the Compactness Theorem that:

is consistent and has a model which contains an `infinite’ integer ^{[4]}.

*Reason:* We shall argue that the condition in the above definition of requires, first of all, that we must be able to extend by the addition of a `relativised’ axiom (cf. Fe92; Me64, p.192) such as:

,

from which we may conclude the existence of some such that:

for all .

However, we shall further show that even this would not yield a model for since, by Theorem 1, we cannot introduce a `completed’ infinity such as into either or any model of !

** A post-computationalist doctrine**

More generally we shall argue that—if our interest is in the arithmetical properties of models of PA—then we first need to make explicit any appeal to non-constructive considerations such as Aristotle’s particularisation (Definition 3).

We shall then argue that, even from a classical perspective, there are serious foundational, post-computationalist, reservations to accepting that a consistent PA can be forced by the Compactness Theorem into admitting non-standard models which contain elements other than the natural numbers.

*Reason:* Any arithmetical application of the Compactness Theorem to PA can neither ignore currently accepted post-computationalist doctrines of objectivity—nor contradict the constructive assignments of satisfaction and truth to the atomic formulas of PA (therefore to the compound formulas under Tarski’s inductive definitions) in terms of either algorithmical verifiability or algorithmic computability (An12, ).

The significance of this doctrine ^{[5]} is that it helps highlight how the algorithmically verifiable (Definition 1) formulas of PA define the classical non-finitary standard interpretation of PA ^{[6]} (to which standard arguments for the existence of non-standard models of PA critically appeal).

Accordingly, we shall show that standard arguments which appeal to the ante-computationalist interpretation of the Compactness Theorem—for forcing non-standard models of PA ^{[7]} which contain an `infinite’ integer—cannot admit constructive assignments of satisfaction and truth ^{[8]} (in terms of algorithmical verifiability) to the atomic formulas of their putative extension of PA.

We shall conclude that such arguments therefore questionably postulate by axiomatic fiat that which they seek to `prove’!

** Standard arguments for non-standard models of PA**

In this limited investigation we shall consider only the following three standard arguments for the existence of non-standard models of the first-order Peano Arithmetic PA:

(*i*) If PA is consistent, then we obtain a non-standard model for PA which contains an `infinite’ integer by applying the Compactness Theorem to the union of the set of formulas that are satisfied or true in the classical `standard’ model of PA ^{[9]} and the countable set of all PA-formulas of the form .

(*ii*) If PA is consistent, then we obtain a non-standard model for PA which contains an `infinite’ integer by adding a constant to the language of PA and applying the Compactness Theorem to the theory **P**.

(*iii*) If PA is consistent, then we obtain a non-standard model for PA which contains an `infinite’ integer by adding the PA formula as an axiom to PA, where is a Gödelian formula ^{[10]} that is unprovable in PA, even though ] is provable in PA for any given PA numeral (Go31, p.25(1)).

We shall first argue that (*i*) and (*ii*)—which appeal to Thoralf Skolem’s ante-computationalist reasoning (in Sk34) for the existence of a non-standard model of PA—should be treated as foundationally fragile from a finitary, post-computationalist perspective within classical logic ^{[11]}.

We shall then argue that although (*iii*)—which appeals to Kurt Gödel’s (also ante-computationalist) reasoning (Go31) for the existence of a non-standard model of PA—does yield a model other than the classical `standard’ model of PA, we cannot conclude by even classical (albeit post-computationalist) reasoning that the domain is other than the domain of the natural numbers unless we make the non-constructive—and logically fragile—extraneous assumption that a consistent PA is necessarily -consistent.

(*-consistency*): A formal system S is -consistent if, and only if, there is no S-formula for which, first, is S-provable and, second, is S-provable for any given S-term .

** Algorithmically verifiable formulas and algorithmically computable formulas**

We begin by distinguishing between:

**Definition 1:** An atomic formula ^{[12]} of PA is algorithmically verifiable under an interpretation if, and only if, for any given numeral , there is an algorithm which can provide objective evidence (Mu91) for deciding the truth value of each formula in the finite sequence of PA formulas under the interpretation.

The concept is well-defined in the sense that the `algorithmic verifiability’ of the formulas of a formal language which contain logical constants can be inductively defined under an interpretation in terms of the `algorithmic verifiability’ of the interpretations of the atomic formulas of the language (An12).

We note further that the formulas of the first order Peano Arithmetic PA are decidable under the standard interpretation of PA over the domain of the natural numbers if, and only if, they are algorithmically verifiable under the interpretation ^{[13]}.

**Definition 2:** An atomic formula of PA is algorithmically computable under an interpretation if, and only if, there is an algorithm that can provide objective evidence for deciding the truth value of each formula in the denumerable sequence of PA formulas under the interpretation.

This concept too is well-defined in the sense that the `algorithmic computability’ of the formulas of a formal language which contain logical constants can also be inductively defined under an interpretation in terms of the `algorithmic computability’ of the interpretations of the atomic formulas of the language (An12).

We note further that the PA-formulas are decidable under an algorithmic interpretation of PA over if, and only if, they are algorithmically computable under the interpretation ^{[14]}.

Although we shall not appeal to the following in this paper, we note in passing that the foundational significance ^{[15]} of the distinction lies in the argument that:

**Lemma 1:** There are algorithmically verifiable number theoretical functions which are not algorithmically computable. ^{[16]}

**Proof:** Let denote the digit in the decimal expansion of a putatively given real number in the interval . By the definition of a real number as the limit of a Cauchy sequence of rationals, it follows that is an algorithmically verifiable number-theoretic function. Since every algorithmically computable real is countable (Tu36), Cantor’s diagonal argument (Kl52, pp.6-8) shows that there are real numbers that are not algorithmically computable. The Lemma follows.

** Making non-finitary assumptions explicit**

We next make explicit—and briefly review—a tacitly held fundamental tenet of classical logic which is unrestrictedly adopted as intuitively obvious by standard literature ^{[17]} that seeks to build upon the formal first-order predicate calculus FOL:

**Definition 3:** (*Aristotle’s particularisation*) This holds that from an assertion such as:

`It is not the case that: For any given , does not hold’,

usually denoted symbolically by `‘, we may always validly infer in the classical, Aristotlean, logic of predicates (HA28, pp.58-59) that:

`There exists an unspecified such that holds’,

usually denoted symbolically by `‘.

** The significance of Aristotle’s particularisation for the first-order predicate calculus**

Now we note that in a formal language the formula `‘ is an abbreviation for the formula `‘; and that the commonly accepted interpretation of this formula tacitly appeals to Aristotlean particularisation.

However, as L. E. J. Brouwer had noted in his seminal 1908 paper on the unreliability of logical principles (Br08), the commonly accepted interpretation of this formula is ambiguous if interpretation is intended over an infinite domain.

Brouwer essentially argued that, even supposing the formula `‘ of a formal Arithmetical language interprets as an arithmetical relation denoted by `‘, and the formula `‘ as the arithmetical proposition denoted by `‘, the formula `‘ need not interpret as the arithmetical proposition denoted by the usual abbreviation `‘; and that such postulation is invalid as a general logical principle in the absence of a means for constructing some putative object for which the proposition holds in the domain of the interpretation.

Hence we shall follow the convention that the assumption that `‘ is the intended interpretation of the formula `‘—which is essentially the assumption that Aristotle’s particularisation holds over the domain of the interpretation—must always be explicit.

** The significance of Aristotle’s particularisation for PA**

In order to avoid intuitionistic objections to his reasoning, Kurt Gödel introduced the syntactic property of -consistency ^{[18]} as an explicit assumption in his formal reasoning in his seminal 1931 paper on formally undecidable arithmetical propositions (Go31, p.23 and p.28).

Gödel explained at some length ^{[19]} that his reasons for introducing -consistency explicitly was to avoid appealing to the semantic concept of classical arithmetical truth in Aristotle’s logic of predicates (which presumes Aristotle’s particularisation).

The two concepts are meta-mathematically equivalent in the sense that, if PA is consistent, then PA is -consistent if, and only if, Aristotle’s particularisation holds under the standard interpretation of PA ^{[20]}.

** The ambiguity in admitting an `infinite’ constant**

We begin our consideration of standard arguments for the existence of non-standard models of PA which contain an `infinite’ integer by first highlighting and eliminating an ambiguity in the argument as it is usually found in standard texts ^{[21]}:

“**Corollary.** There is a non-standard model of **P** with domain the natural numbers in which the denotation of every nonlogical symbol is an arithmetical relation or function.

*Proof.* As in the proof of the existence of nonstandard models of arithmetic, add a constant to the language of arithmetic and apply the Compactness Theorem to the theory

**P** n:

to conclude that it has a model (necessarily infinite, since all models of **P** are). The denotations of in any such model will be a non-standard element, guaranteeing that the model is non-standard. Then apply the arithmetical Löwenheim-Skolem theorem to conclude that the model may be taken to have domain the natural numbers, and the denotations of all nonlogical symbols arithmetical.”

… BBJ03, p.306, Corollary 25.3.

** We cannot force PA to admit a transfinite ordinal**

The ambiguity lies in a possible interpretation of the symbol as a `completed’ infinity (such as Cantor’s first transfinite ordinal ) in the context of non-standard models of PA. To eliminate this possibility we establish trivially that, and briefly examine why:

**Theorem 1:** No model of PA can admit a transfinite ordinal under the standard interpretation of the classical logic FOL^{[22]}.

**Proof:** Let [] denote the PA-formula:

Since Aristotle’s particularisation is tacitly assumed under the standard interpretation of FOL, this translates in every model of PA, as:

If denotes an element in the domain of a model of PA, then either is 0, or is a `successor’.

Further, in every model of PA, if denotes the interpretation of []:

(a) is true;

(b) If is true, then is true.

Hence, by Gödel’s completeness theorem:

(c) PA proves ;

(d) PA proves .

*Gödel’s Completeness Theorem:* In any first-order predicate calculus, the theorems are precisely the logically valid well-formed formulas (*i. e. those that are true in every model of the calculus*).

Further, by Generalisation:

(e) PA proves ;

*Generalisation in PA:* [] follows from [].

Hence, by Induction:

(f) is provable in PA.

*Induction Axiom Schema of PA:* For any formula [] of PA:

[]

In other words, except 0, every element in the domain of any model of PA is a `successor’. Further, the standard PA axioms ensure that can only be a `successor’ of a unique element in any model of PA.

Since Cantor’s first limit ordinal is not the `successor’ of any ordinal in the sense required by the PA axioms, and since there are no infinitely descending sequences of ordinals (cf. Me64, p.261) in a model—if any—of a first order set theory such as ZF, the theorem follows.

** Why we cannot force PA to admit a transfinite ordinal**

Theorem 1 reflects the fact that we can define the usual order relation `‘ in PA so that every instance of the PA Axiom Schema of Finite Induction, such as, say:

(*i*) []

yields the weaker PA theorem:

(*ii*) []

Now, if we interpret PA without relativisation in ZF ^{[23]}— i.e., numerals as finite ordinals, [] as [], etc.— then (*ii*) always translates in ZF as a theorem:

(*iii*) []

However, (*i*) does not always translate similarly as a ZF-theorem, since the following is not necessarily provable in ZF:

(*iv*) []

*Example:* Define [] as `[]’.

We conclude that, whereas the language of ZF admits as a constant the first limit ordinal which would interpret in any putative model of ZF as the (`completed’ infinite) set of all finite ordinals:

**Corollary 1:** The language of PA admits of no constant that interprets in any model of PA as the set of all natural numbers.

We note that it is the non-logical Axiom Schema of Finite Induction of PA which does not allow us to introduce—contrary to what is suggested by standard texts ^{[24]}—an `actual’ (*or `completed’*) infinity disguised as an arbitrary constant (usually denoted by or ) into either the language, or a putative model, of PA ^{[25]}.

** Forcing PA to admit denumerable descending dense sequences**

The significance of Theorem 1 is seen in the next two arguments, which attempt to implicitly bypass the Theorem’s constraint by appeal to the Compactness Theorem for forcing a non-standard model onto PA ^{[26]}.

However, we argue in both cases that applying the Compactness Theorem constructively—even from a classical perspective—does not logically yield a non-standard model for PA with an `infinite’ integer as claimed ^{[27]}.

** An argument for a non-standard model of PA**

The first is the argument (Ln08, p.7) that we can define a non-standard model of PA with an infinite descending chain of successors, where the only non-successor is the null element :

1. Let (*the set of natural numbers*); (*equality*); (*the successor function*); (*the addition function*); (*the product function*); (*the null element*) be the structure that serves to define a model of PA, say .

2. Let T[] be the set of PA-formulas that are satisfied or true in .

3. The PA-provable formulas form a subset of T[].

4. Let be the countable set of all PA-formulas of the form , where the index is a natural number.

5. Let T be the union of and T[].

6. T[] plus any finite set of members of has a model, e.g., itself, since is a model of any finite descending chain of successors.

7. Consequently, by Compactness, T has a model; call it .

8. has an infinite descending sequence with respect to because it is a model of .

9. Since PA is a subset of T, is a non-standard model of PA.

** Why the argument in is logically fragile**

However if—as claimed in above— is a model of T[] plus any finite set of members of , and the PA term is well-defined for any given natural number , then:

All PA-formulas of the form are PA-provable,

is a proper sub-set of the PA-provable formulas, and

T is identically T[].

*Reason:* The argument cannot be that some PA-formula of the form is true in , but not PA-provable, as this would imply that if PA is consistent then PA+ has a model other than ; in other words, it would presume that which is sought to be proved, namely that PA has a non-standard model ^{[28]}!

Consequently, the postulated model of T in by `Compactness’ is the model that defines T[]. However, has no infinite descending sequence with respect to , even though it is a model of .

Hence the argument does not establish the existence of a non-standard model of PA with an infinite descending sequence with respect to the successor function .

** A formal argument for a non-standard model of PA**

The second is the more formal argument ^{[29]}:

“Let denote the complete -theory of the standard model, i.e. is the collection of all true -sentences. For each we let be the closed term of ; is just the constant symbol . We now expand our language by adding to it a new constant symbol , obtaining the new language , and consider the following -theory with axioms

(for each )

and

(for each )

This theory is consistent, for each finite fragment of it is contained in

for some , and clearly the -structure with domain and interpreted naturally, and interpreted by the integer , satisfies . Thus by the compactness theore is consistent and has a model . The first thing to note about is that

for all , and hence it contains an `infinite’ integer.”

** Why the argument in too is logically fragile**

We note again that, from an arithmetical perspective, any application of the Compactness Theorem to PA cannot ignore currently accepted computationalist doctrines of objectivity (cf. Mu91) and contradict the constructive assignment of satisfaction and truth to the atomic formulas of PA (therefore to the compound formulas under Tarski’s inductive definitions) in terms of either algorithmical verifiability or algorithmic computability (An12, ).

Accordingly, from an arithmetical perspective we can only conclude by the Compactness Theorem that if is the -theory of the standard model (interpretation), then we may consistently add to it the following as an additional—not necessarily independent—axiom:

.

Moreover, even though is algorithmically computable as always true in the standard model—whence all instances of it are also therefore in —we cannot conclude by the Compactness Theorem that is consistent and has a model which contains an `infinite’ integer.

*Reason:* The condition `‘ in requires, first of all, that we must be able to extend by the addition of a `relativised’ axiom (cf. Fe92; Me64, p.192) such as:

,

from which we may conclude the existence of some such that:

for all .

However, even this would not yield a model for since, by Theorem 1, we cannot introduce a `completed’ infinity such as into any model of !

As the argument stands, it seeks to violate finitarity by adding a new constant to the language of PA that is not definable in and, ipso facto, adding an atomic formula to PA whose satisfaction under any interpretation of PA is not algorithmically verifiable!

Since the atomic formulas of PA are algorithmically verifiable under the standard interpretation (An12, Corollary 2), the above conclusion too postulates that which it seeks to prove!

Moreover, the postulation would be false if were categorical.

Since must have a non-standard model if it is not categorical, we consider next whether we may conclude from Gödel’s incompleteness argument (in Go31) that any such model can have an `infinite’ integer.

** Gödel’s argument for a non-standard model of PA**

We begin by considering the Gödelian formula ^{[30]} which is unprovable in PA if PA is consistent, even though the formula is provable in a consistent PA for any given PA numeral .

Now, it follows from Gödel’s reasoning ^{[31]} that:

**Theorem 2:** If PA is consistent, then we may add the PA formula as an axiom to PA without inviting inconsistency.

**Theorem 3:** If PA is -consistent, then we may add the PA formula as an axiom to PA without inviting inconsistency.

Gödel concluded from this that:

**Corollary 2:** If PA is -consistent, then there are at least two distinctly different models of PA.

If we assume that a consistent PA is necessarily -consistent, then it follows that one of the two putative models postulated by Corollary 2 must contain elements other than the natural numbers.

We conclude that Gödel’s justification for the assumption that non-standard models of PA containing elements other than the natural numbers are logically feasible lies in his non-constructive—and logically fragile—assumption that a consistent PA is necessarily -consistent.

** Why Gödel’s assumption is logically fragile**

Now, whereas Gödel’s proof of Corollary 2 appeals to the non-constructive Aristotle’s particularisation, a constructive proof of the Corollary follows trivially from evidence-based interpretations of PA (An12).

*Reason:* Tarski’s inductive definitions allow us to provide *finitary* satisfaction and truth certificates to all atomic (and ipso facto to all compound) formulas of PA over the domain of the natural numbers in *two* essentially different ways:

(1) In terms of algorithmic verifiabilty (An12, ); and

(2) In terms of algorithmic computability (An12, ).

That there can be even one, let alone two, logically sound and finitary assignments of satisfaction and truth certificates to both the atomic and compound formulas of PA was hitherto unsuspected!

Moreover, neither the putative `algorithmically verifiable’ model, nor the `algorithmically computable’ model, of PA defined by these finitary satisfaction and truth assignments contains elements other than the natural numbers.

**(a) Any algorithmically verifiable model of PA is necessarily over **

For instance if, in the first case, we assume that the algorithmically verifiable atomic formulas of PA determine an algorithmically verifiable model of PA over the domain of the PA numerals, then such a putative model would be isomorphic to the standard model of PA over the domain of the natural numbers (An12, & , Corollary 2).

However, such a putative model of PA over would not be finitary since, if the formula were to interpret as true in it, then we could only conclude that, for any numeral , there is an algorithm which will finitarily certify the formula as true under an algorithmically verifiable interpretation in .

We could not conclude that there is a single algorithm which, for any numeral , will finitarily certify the formula as true under the algorithmically verifiable interpretation in .

Consequently, the PA Axiom Schema of Finite Induction would not interpret as true finitarily under the algorithmically verifiable interpretation of PA over the domain of the PA numerals.

Thus the algorithmically verifiable interpretation of PA would not define a finitary model of PA.

However, if we were to assume that the algorithmically verifiable interpretation of PA defines a non-finitary model of PA, then it would follow that:

PA is necessarily -consistent;

Aristotle’s particularisation holds over ; and

The `standard’ interpretation of PA also defines a non-finitary model of PA over .

**(b) The algorithmically computable interpretation of PA is over **

The second case is where the algorithmically computable atomic formulas of PA determine an algorithmically computable model of PA over the domain of the natural numbers (An12, & ).

The algorithmically computable model of PA is finitary since we can show that, if the formula interprets as true under it, then we may always conclude that there is a single algorithm which, for any numeral , will finitarily certify the formula as true in under the algorithmically computable interpretation.

Consequently we can show that all the PA axioms—including the Axiom Schema of Finite Induction—interpret finitarily as true in under the algorithmically computable interpretation of PA, and the PA Rules of Inference preserve such truth finitarily (An12, Theorem 4).

Thus the algorithmically computable interpretation of PA defines a finitary model of PA from which we may conclude that:

PA is consistent (An12, , Theorem 6).

** Why we cannot conclude that PA is necessarily -consistent**

By the way the above finitary interpretation (b) is defined under Tarski’s inductive definitions (An12, ), if a PA-formula interprets as true in the corresponding finitary model of PA, then there is an algorithm that provides a certificate for such truth for in ; whilst if interprets as false in the above finitary model of PA, then there is no algorithm that can provide such a truth certificate for in (An12, ).

Now, if there is no algorithm that can provide such a truth certificate for the Gödelian formula in , then we would have by definition first that the PA formula is true in the model, and second by Gödel’s reasoning that the formula is true in the model for any given numeral . Hence Aristotle’s particularisation would not hold in the model.

However, by definition if PA were -consistent then Aristotle’s particularisation must necessarily hold in every model of PA.

It follows that unless we can establish that there is some algorithm which can provide such a truth certificate for the Gödelian formula in , we cannot make the unqualified assumption—as Gödel appears to do—that a consistent PA is necessarily -consistent.

**Conclusion**

We have argued that standard arguments for the existence of non-standard models of the first-order Peano Arithmetic PA with domains other than the domain of the natural numbers should be treated as logically fragile even from within classical logic. In particular we have argued that although Gödel’s argument for the existence of a non-standard model of PA does yield a model of PA other than the classical non-finitary `standard’ model, we cannot conclude from it that the domain is other than the domain of the natural numbers unless we make the non-constructive—and logically fragile—assumption that a consistent PA is necessarily -consistent.

**References**

**BBJ03** George S. Boolos, John P. Burgess, Richard C. Jeffrey. 2003. *Computability and Logic* (4th ed). Cambridge University Press, Cambridge.

**Be59** Evert W. Beth. 1959. *The Foundations of Mathematics.* In *Studies in Logic and the Foundations of Mathematics.* Edited by L. E. J. Brouwer, E. W. Beth, A. Heyting. 1959. North Holland Publishing Company, Amsterdam.

**BF58** Paul Bernays and Abraham A. Fraenkel. 1958. *Axiomatic Set Theory* In *Studies in Logic and the Foundations of Mathematics.* Edited by L. E. J. Brouwer, E. W. Beth, A. Heyting. 1959. North Holland Publishing Company, Amsterdam.

**Bo00** Andrey I. Bovykin. 2000. *On order-types of models of arithmetic.* Thesis submitted to the University of Birmingham for the degree of Ph.D. in the Faculty of Science, School of Mathematics and Statistics, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom, 13 April 2000.

**Br08** L. E. J. Brouwer. 1908. *The Unreliability of the Logical Principles.* English translation in A. Heyting, Ed. *L. E. J. Brouwer: Collected Works 1: Philosophy and Foundations of Mathematics.* Amsterdam: North Holland / New York: American Elsevier (1975): pp.107-111.

**Co66** Paul J. Cohen. 1966. *Set Theory and the Continuum Hypothesis.* (Lecture notes given at Harvard University, Spring 1965) W. A. Benjamin, Inc., New York.

**Da82** Martin Davis. 1958. *Computability and Unsolvability.* 1982 ed. Dover Publications, Inc., New York.

**EC89** Richard L. Epstein, Walter A. Carnielli. 1989. *Computability: Computable Functions, Logic, and the Foundations of Mathematics.* Wadsworth & Brooks, California.

**Fe92** Solomon Feferman. 1992. *What rests on what: The proof-theoretic analysis of mathematics* Invited lecture, 15th International Wittgenstein Symposium: *Philosophy of Mathematics*, held in Kirchberg/Wechsel, Austria, 16-23 August 1992.

**Go31** Kurt Gödel. 1931. *On formally undecidable propositions of Principia Mathematica and related systems I.* Translated by Elliott Mendelson. In M. Davis (ed.). 1965. *The Undecidable.* Raven Press, New York.

**HA28** David Hilbert & Wilhelm Ackermann. 1928. *Principles of Mathematical Logic.* Translation of the second edition of the *Grundzüge Der Theoretischen Logik.* 1928. Springer, Berlin. 1950. Chelsea Publishing Company, New York.

**Hi25** David Hilbert. 1925. *On the Infinite.* Text of an address delivered in Münster on 4th June 1925 at a meeting of the Westphalian Mathematical Society. In Jean van Heijenoort. 1967.Ed. *From Frege to Gödel: A source book in Mathematical Logic, 1878 – 1931.* Harvard University Press, Cambridge, Massachusetts.

**HP98** Petr Hájek and Pavel Pudlák. 1998. *Metamathematics of First-Order Arithmetic.* Volume 3 of *Perspectives in Mathematical Logic* Series, ISSN 0172-6641. Springer-Verlag, Berlin, 1998.

**Ka91** Richard Kaye. 1991. *Models of Peano Arithmetic.* Oxford Logic Guides, 15. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.

**Ka11** Richard Kaye. 2011. *Tennenbaum’s theorem for models of arithmetic.* In *Set Theory, Arithmetic, and Foundations of Mathematics.* Eds. Juliette Kennedy & Roman Kossak. Lecture Notes in Logic (No. 36). pp.66-79. Cambridge University Press, 2011. Cambridge Books Online. http://dx.doi.org/10.1017/CBO9780511910616.005.

**Kl52** Stephen Cole Kleene. 1952. *Introduction to Metamathematics.* North Holland Publishing Company, Amsterdam.

**Kn63** G. T. Kneebone. 1963. *Mathematical Logic and the Foundations of Mathematics: An Introductory Survey.* D. Van Norstrand Company Limited, London.

**Ko06** Roman Kossak and James H. Schmerl. 2006. *The structure of models of Peano arithmetic.* Oxford Logic Guides, 50. Oxford Science Publications. The Clarendon Press, Oxford University Press, Oxford, 2006.

**Li64** A. H. Lightstone. 1964. *The Axiomatic Method.* Prentice Hall, NJ.

**Ln08** Laureano Luna. 2008. *On non-standard models of Peano Arithmetic.* In *The Reasoner,* Vol(2)2 p7.

**Me64** Elliott Mendelson. 1964. *Introduction to Mathematical Logic.* Van Norstrand, Princeton.

**Mu91.** Chetan R. Murthy. 1991. *An Evaluation Semantics for Classical Proofs.* Proceedings of Sixth IEEE Symposium on Logic in Computer Science, pp. 96-109, (also Cornell TR 91-1213), 1991.

**Nv64** P. S. Novikov. 1964. *Elements of Mathematical Logic.* Oliver & Boyd, Edinburgh and London.

**Qu63** Willard Van Orman Quine. 1963. *Set Theory and its Logic.* Harvard University Press, Cambridge, Massachusette.

**Rg87** Hartley Rogers Jr. 1987. *Theory of Recursive Functions and Effective Computability.* MIT Press, Cambridge, Massachusetts.

**Ro53** J. Barkley Rosser. 1953. *Logic for Mathematicians.* McGraw Hill, New York.

**Sh67** Joseph R. Shoenfield. 1967. *Mathematical Logic.* Reprinted 2001. A. K. Peters Ltd., Massachusetts.

**Sk28** Thoralf A. Skolem. 1928. *On Mathematical Logic.* Text of a lecture delivered on 22nd October 1928 before the Norwegian Mathematical Association. In Jean van Heijenoort. 1967. Ed. *From Frege to Gödel: A source book in Mathematical Logic, 1878 – 1931* Harvard University Press, Cambridge, Massachusetts.

**Sk34** Thoralf A. Skolem. 1934. *\”{U}ber die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abz\”{a}hlbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen.* Fundamenta Mathematicae, 23, 150-161. English version: *Peano’s axioms and models of arithmetic.* In *Mathematical interpretations of formal systems.* North Holland, Amsterdam, 1955, pp.1-14.

**Sm92** Raymond M. Smullyan. 1992. *Gödel’s Incompleteness Theorems.* Oxford University Press, Inc., New York.

**Su60** Patrick Suppes. 1960. *Axiomatic Set Theory.* Van Norstrand, Princeton.

**Tu36** Alan Turing. 1936. *On computable numbers, with an application to the Entscheidungsproblem* In M. Davis (ed.). 1965. *The Undecidable.* Raven Press, New York. Reprinted from the Proceedings of the London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265; corrections, Ibid, vol 43 (1937) pp. 544-546.

**Wa63** Hao Wang. 1963. *A survey of Mathematical Logic.* North Holland Publishing Company, Amsterdam.

**An12** Bhupinder Singh Anand. 2012. *Evidence-Based Interpretations of PA.* In Proceedings of the Symposium on Computational Philosophy at the AISB/IACAP World Congress 2012-Alan Turing 2012, 2-6 July 2012, University of Birmingham, Birmingham, UK.

**An13** … 2013. *A suggested mathematical perspective for the argument.* Presented on 7’th April at the workshop on `*Logical Quantum Structures*‘ at UNILOG’2013, World Congress and School on Universal Logic, March 2013 – April 2013, Rio de Janeiro, Brazil.

**Notes**

Return to 1: By which we mean arguments such as in Ka91 (see pg.1), where the meta-theory is taken to be a set-theory such as ZF or ZFC, and the logical consistency of the meta-theory is not considered relevant to the argumentation.

Return to 2: For purposes of this investigation we may take this to be a first order theory such as the theory S defined in Me64, pp.102-103.

Return to 3: eg. Ka91; Bo00; BBJ03,\ ch.25,\ p.302; Ko06; Ka11.

Return to 4: As argued in Ka91, p.10-11.

Return to 5: Some of the—hitherto unsuspected—consequences of this doctrine are detailed in An12.

Return to 6: An12, Corollary 2; `non-finitary’ because the Axiom Schema of Finite Induction *cannot* be finitarily verified as true under the standard interpretation of PA with respect to `truth’ as defined by the algorithmically verifiable formulas of PA.

Return to 7: eg., BBJ03, p.155, Lemma 13.3 (Model existence lemma).

Return to 8: cf. The standard non-constructive set-theoretical assignment-by-postulation **(S5)** of the satisfaction properties **(S1)** to **(S8)** in BBJ03, p.153, Lemma 13.1 (Satisfaction properties lemma), which appeals critically to Aristotle’s particularisation.

Return to 9: For purposes of this investigation we may take this to be an interpretation of PA as defined in Me64, p.107.

Return to 10: In his seminal 1931 paper Go31, Kurt Gödel defines, and refers to, the formula corresponding to only by its `Gödel’ number (op. cit., p.25, Eqn.(12)), and to the formula corresponding to only by its `Gödel’ number .

Return to 11: By `classical logic’ we mean the standard first-order predicate calculus FOL where we neither deny the Law of the Excludeds Middle, nor assume that the FOL is -consistent (i.e., we do not assume that Aristotle’s particularisation must hold under any interpretation of the logic).

Return to 12: *Notation*: For the sake of convenience, we shall use square brackets to indicate that the expression enclosed by them is to be treated as denoting a formula of a formal theory, and not as denoting an interpretation.

Return to 13: However, as noted earlier, the Axiom Schema of Finite Induction *cannot* be finitarily verified as true under the standard interpretation of PA with respect to `truth’ as defined by the algorithmically verifiable formulas of PA .

Return to 14: In this case however, the Axiom Schema of Finite Induction *can* be finitarily verified as true under the standard interpretation of PA with respect to `truth’ as defined by the algorithmically computable formulas of PA (An12, Theorem 4).

Return to 15: The far reaching—hitherto unsuspected—consequences of this distinction for PA are detailed in An12.

Return to 16: We note that algorithmic computability implies the existence of an algorithm that can decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions, whereas algorithmic verifiability does not imply the existence of an algorithm that can decide the truth/falsity of each proposition in a well-defined denumerable sequence of propositions. From the point of view of a finitary mathematical philosophy, the significant difference between the two concepts could be expressed (An13) by saying that we may treat the decimal representation of a real number as corresponding to a physically measurable limit—and not only to a mathematically definable limit—if and only if such representation is definable by an algorithmically computable function.

Return to 17: See Hi25, p.382; HA28, p.48; Sk28, p.515; Go31, p.32.; Kl52, p.169; Ro53, p.90; BF58, p.46; Be59, pp.178 & 218; Su60, p.3; Wa63, p.314-315; Qu63, pp.12-13; Kn63, p.60; Co66, p.4; Me64, pp.45, 47, 52(ii), 214(fn); Nv64, p.92; Li64, p.33; Sh67, p.13; Da82, p.xxv; Rg87, p.xvii; EC89, p.174; Mu91; Sm92, p.18, Ex.3; BBJ03, p.102.

Return to 18: The significance of -consistency for the formal system PA is highlighted inAn12.

Return to 19: In his introduction on p.9 of Go31.

Return to 20: For details see An12.

Return to 21: cf. HP98, p.13, ; Me64, p.112, Ex. 2.

Return to 22: For purposes of this investigation we may take this to be the first order predicate calculus as defined in Me64, p.57.

Return to 23: In the sense indicated by Feferman Fe92.

Return to 24: eg. HP98, p.13, ; Ka91, p.11 & p.12, fig.1; BBJ03. p.306, Corollary 25.3; Me64, p.112, Ex. 2.

Return to 25: A possible reason why the Axiom Schema of Finite Induction does not admit non-finitary reasoning into either PA, or into any model of PA, is suggested in below.

Return to 26: eg. Ln08, p.7; Ka91, pp.10-11, p.74 & p.75, Theorem 6.4.

Return to 27: And as suggested also by standard texts in such cases; eg. BBJ03. p.306, Corollary 25.3; Me64, p.112, Ex. 2.

Return to 28: To place this distinction in perspective, Adrien-Marie Legendre and Carl Friedrich Gauss independently conjectured in 1796 that, if denotes the number of primes less than , then is asymptotically equivalent to /In. Between 1848/1850, Pafnuty Lvovich Chebyshev confirmed that if /(/In) has a limit, then it must be 1. However, the crucial question of whether /(/In) has a limit at all was answered in the affirmative using analytic methods independently by Jacques Hadamard and Charles Jean de la Vallée Poussin only in 1896, and using only elementary methods by Atle Selberg and Paul Erdös in 1949.

Return to 29: Ka91, pp.10-11; attributed as essentially Skolem’s argument in Sk34.

Return to 30: In his seminal 1931 paper Go31, Kurt Gödel defines, and refers to, the formula corresponding to only by its `Gödel’ number (op. cit., p.25, Eqn.(12)), and to the formula corresponding to only by its `Gödel’ number .

Return to 31: Go31, p.25(1) & p.25(2).

** The Holy Grail of Arithmetic: Bridging Provability and Computability**

*See also this update.*

**Peter Wegner and Dina Goldin**

In a short opinion paper, `Computation Beyond Turing Machines‘, Computer Scientists Peter Wegner and Dina Goldin (Wg03) advanced the thesis that:

`A paradigm shift is necessary in our notion of computational problem solving, so it can provide a complete model for the services of today’s computing systems and software agents.’

We note that Wegner and Goldin’s arguments, in support of their thesis, seem to reflect an extraordinarily eclectic view of mathematics, combining both an implicit acceptance of, and implicit frustration at, the standard interpretations and dogmas of classical mathematical theory:

(i) `… Turing machines are inappropriate as a universal foundation for computational problem solving, and … computer science is a fundamentally non-mathematical discipline.’

(ii) `(Turing’s) 1936 paper … proved that mathematics could not be completely modeled by computers.’

(iii) `… the Church-Turing Thesis … equated logic, lambda calculus, Turing machines, and algorithmic computing as equivalent mechanisms of problem solving.’

(iv) `Turing implied in his 1936 paper that Turing machines … could not provide a model for all forms of mathematics.’

(v) `… Gödel had shown in 1931 that logic cannot model mathematics … and Turing showed that neither logic nor algorithms can completely model computing and human thought.’

These remarks vividly illustrate the dilemma with which not only Theoretical Computer Sciences, but all applied sciences that depend on mathematics—for providing a verifiable language to express their observations precisely—are faced:

**Query:** Are formal classical theories essentially unable to adequately express the extent and range of human cognition, or does the problem lie in the way formal theories are classically interpreted at the moment?

The former addresses the question of whether there are absolute limits on our capacity to express human cognition unambiguously; the latter, whether there are only temporal limits—not necessarily absolute—to the capacity of classical interpretations to communicate unambiguously that which we intended to capture within our formal expression.

Prima facie, applied science continues, perforce, to interpret mathematical concepts Platonically, whilst waiting for mathematics to provide suitable, and hopefully reliable, answers as to how best it may faithfully express its observations verifiably.

**Lance Fortnow**

This dilemma is also reflected in Computer Scientist Lance Fortnow’s on-line rebuttal of Wegner and Goldin’s thesis, and of their reasoning.

Thus Fortnow divides his faith between the standard interpretations of classical mathematics (and, possibly, the standard set-theoretical models of formal systems such as standard Peano Arithmetic), and the classical computational theory of Turing machines.

He relies on the former to provide all the proofs that matter:

`Not every mathematical statement has a logical proof, but logic does capture everything we can prove in mathematics, which is really what matters’;

and, on the latter to take care of all essential, non-provable, truth:

`… what we can compute is what computer science is all about’.

**Can faith alone suffice?**

However, as we shall argue in a subsequent post, Fortnow’s faith in a classical Church-Turing Thesis that ensures:

`… Turing machines capture everything we can compute’,

may be as misplaced as his faith in the infallibility of standard interpretations of classical mathematics.

*The reason:* There are, prima facie, reasonably strong arguments for a Kuhnian (Ku62) paradigm shift; not, as Wegner and Goldin believe, in the notion of computational problem solving, but in the standard interpretations of classical mathematical concepts.

However, Wegner and Goldin could be right in arguing that the direction of such a shift must be towards the incorporation of non-algorithmic effective methods into classical mathematical theory (as detailed in the Birmingham paper); presuming, from the following remarks, that this is, indeed, what `external interactions’ are assumed to provide beyond classical Turing-computability:

(vi) `… that Turing machine models could completely describe all forms of computation … contradicted Turing’s assertion that Turing machines could only formalize algorithmic problem solving … and became a dogmatic principle of the theory of computation’.

(vii) `… interaction between the program and the world (environment) that takes place during the computation plays a key role that cannot be replaced by any set of inputs determined prior to the computation’.

(viii) `… a theory of concurrency and interaction requires a new conceptual framework, not just a refinement of what we find natural for sequential [algorithmic] computing’.

(ix) `… the assumption that all of computation can be algorithmically specified is still widely accepted’.

A widespread notion of particular interest, which seems to be recurrently implicit in Wegner and Goldin’s assertions too, is that mathematics is a dispensable tool of science, rather than its indispensable mother tongue.

**Elliott Mendelson**

However, the roots of such beliefs may also lie in ambiguities, in the classical definitions of foundational elements, that allow the introduction of non-constructive—hence non-verifiable, non-computational, ambiguous, and essentially Platonic—elements into the standard interpretations of classical mathematics.

For instance, in a 1990 philosophical reflection, Elliott Mendelson’s following remarks (in Me90; reproduced from Selmer Bringsjord (Br93)), implicitly imply that classical definitions of various foundational elements can be argued as being either ambiguous, or non-constructive, or both:

`Here is the main conclusion I wish to draw: it is completely unwarranted to say that CT is unprovable just because it states an equivalence between a vague, imprecise notion (effectively computable function) and a precise mathematical notion (partial-recursive function). … The concepts and assumptions that support the notion of partial-recursive function are, in an essential way, no less vague and imprecise than the notion of effectively computable function; the former are just more familiar and are part of a respectable theory with connections to other parts of logic and mathematics. (The notion of effectively computable function could have been incorporated into an axiomatic presentation of classical mathematics, but the acceptance of CT made this unnecessary.) … Functions are defined in terms of sets, but the concept of set is no clearer than that of function and a foundation of mathematics can be based on a theory using function as primitive notion instead of set. Tarski’s definition of truth is formulated in set-theoretic terms, but the notion of set is no clearer than that of truth. The model-theoretic definition of logical validity is based ultimately on set theory, the foundations of which are no clearer than our intuitive understanding of logical validity. … The notion of Turing-computable function is no clearer than, nor more mathematically useful (foundationally speaking) than, the notion of an effectively computable function.’

Consequently, standard interpretations of classical theory may, inadvertently, be weakening a desirable perception—of mathematics as the lingua franca of scientific expression—by ignoring the possibility that, since mathematics is, indeed, indisputably accepted as the language that most effectively expresses and communicates intuitive truth, the chasm between formal truth and provability must, of necessity, be bridgeable.

**Cristian Calude, Elena Calude and Solomon Marcus**

The belief in the existence of such a bridge is occasionally implicit in interpretations of computational theory.

For instance, in an arXived paper *Passages of Proof*, Computer Scientists Cristian Calude, Elena Calude and Solomon Marcus remark that:

“Classically, there are two equivalent ways to look at the mathematical notion of proof: logical, as a finite sequence of sentences strictly obeying some axioms and inference rules, and computational, as a specific type of computation. Indeed, from a proof given as a sequence of sentences one can easily construct a Turing machine producing that sequence as the result of some finite computation and, conversely, given a machine computing a proof we can just print all sentences produced during the computation and arrange them into a sequence.”

In other words, the authors seem to hold that Turing-computability of a `proof’, in the case of an arithmetical proposition, is equivalent to provability of its representation in PA.

**Wilfrid Sieg**

We now attempt to build such a bridge formally, which is essentially one between the arithmetical ‘Decidability and Calculability’ described by Philosopher Wilfrid Sieg in his in-depth and wide-ranging survey ‘On Comptability‘, in which he addresses Gödel’s lifelong belief that an iff bridge between the two concepts is ‘impossible’ for ‘the whole calculus of predicates’ (Wi08, p.602).

** Bridging provability and computability: The foundations**

In the paper titled “Evidence-Based Interpretations of ” that was presented to the Symposium on Computational Philosophy at the AISB/IACAP World Congress 2012-Alan Turing 2012, held from to July 2012 at the University of Birmingham, UK (reproduced in this post) we have defined what it means for a number-theoretic function to be:

(i) Algorithmically verifiable;

(ii) Algorithmically computable.

We have shown there that:

(i) The standard interpretation of the first order Peano Arithmetic PA is finitarily sound if, and only if, Aristotle’s particularisation holds over ; and the latter is the case if, and only if, PA is -consistent.

(ii) We can define a finitarily sound algorithmic interpretation of PA over the domain where, if is an atomic formula of PA, then the sequence of natural numbers satisfies if, and only if is algorithmically computable under , but we do not presume that Aristotle’s particularisation is valid over .

(iii) The axioms of PA are always true under the finitary interpretation , and the rules of inference of PA preserve the properties of satisfaction/truth under .

We concluded that:

**Theorem 1:** The interpretation of PA is finitarily sound.

**Theorem 2:** PA is consistent.

** Extending Buss’ Bounded Arithmetic**

One of the more significant consequences of the Birmingham paper is that we can extend the iff bridge between the domain of provability and that of computability envisaged under Buss’ Bounded Arithmetic by showing that an arithmetical formula is PA-provable if, and only if, interprets as true under an algorithmic interpretation of PA.

** A Provability Theorem for PA**

We first show that PA can have no non-standard model (for a distinctly different proof of this convention-challenging thesis see this post and this paper), since it is `algorithmically’ complete in the sense that:

**Theorem 3:** (*Provability Theorem for PA*) A PA formula is PA-provable if, and only if, is algorithmically computable as always true in .

**Proof:** We have by definition that interprets as true under the interpretation if, and only if, is algorithmically computable as always true in .

Since is finitarily sound, it defines a finitary model of PA over —say —such that:

If is PA-provable, then is algorithmically computable as always true in ;

If is PA-provable, then it is not the case that is algorithmically computable as always true in .

Now, we cannot have that both and are PA-unprovable for some PA formula , as this would yield the contradiction:

(i) There is a finitary model—say —of PA+ in which is algorithmically computable as always true in .

(ii) There is a finitary model—say —of PA+ in which it is not the case that is algorithmically computable as always true in

The lemma follows.

** The holy grail of arithmetic**

We thus have that:

**Corollary 1:** PA is categorical finitarily.

Now we note that:

**Lemma 2:** If PA has a sound interpretation over , then there is a PA formula which is algorithmically verifiable as always true over under even though is not PA-provable.

**Proof** In his seminal 1931 paper on formally undecidable arithmetical propositions, Kurt Gödel has shown how to construct an arithmetical formula with a single variable—say ^{[1]}—such that is not PA-provable ^{[2]}, but is instantiationally PA-provable for any given PA numeral . Hence, for any given numeral , the PA formula must hold for some . The lemma follows.

By the argument in Theorem 3 it follows that:

**Corollary 2:** The PA formula defined in Lemma 2 is PA-provable.

**Corollary 3:** Under any sound interpretation of PA, Gödel’s interprets as an algorithmically verifiable, but not algorithmically computable, tautology over .

**Proof** Gödel has shown that ^{[3]} interprets as an algorithmically verifiable tautology ^{[4]}. By Corollary 2 is not algorithmically computable as always true in .

**Corollary 4:** PA is *not* -consistent. ^{[5]}

**Proof** Gödel has shown that if PA is consistent, then is PA-provable for any given PA numeral ^{[6]}. By Corollary 2 and the definition of -consistency, if PA is consistent then it is *not* -consistent.

**Corollary 5:** The standard interpretation of PA is not finitarily sound, and does not yield a finitary model of PA ^{[7]}.

**Proof** If PA is consistent but not -consistent, then Aristotle’s particularisation does not hold over . Since the `standard’, interpretation of PA appeals to Aristotle’s particularisation, the lemma follows.

Since formal quantification is currently interpreted in classical logic ^{[8]} so as to admit Aristotle’s particularisation over as axiomatic ^{[9]}, the above suggests that we may need to review number-theoretic arguments ^{[10]} that appeal unrestrictedly to classical Aristotlean logic.

** The Provability Theorem for PA and Bounded Arithmetic**

In a 1997 paper ^{[11]}, Samuel R. Buss considered Bounded Arithmetics obtained by:

(a) limiting the applicability of the Induction Axiom Schema in PA only to functions with quantifiers bounded by an unspecified natural number bound ;

(b) `weakening’ the statement of the axiom with the aim of differentiating between effective computability over the sequence of natural numbers, and feasible `polynomial-time’ computability over a bounded sequence of the natural numbers ^{[12]}.

Presumably Buss’ intent—as expressed below—is to build an iff bridge between provability in a Bounded Arithmetic and Computability so that a formula, say , is provable in the Bounded Arithmetic if, and only if, there is an algorithm that, for any given numeral , decides the formula as `true’:

If is provable, then there should be an algorithm to find as a function of ^{[13]}.

Since we have proven such a Provability Theorem for PA in the previous section, the first question arises:

** Does the introduction of bounded quantifiers yield any computational advantage?**

Now, one difference ^{[14]} between a Bounded Arithmetic and PA is that we can presume in the Bounded Arithmetic that, from a proof of , we may always conclude that there is some numeral such that is provable in the arithmetic; however, this is not a finitarily sound conclusion in PA.

*Reason:* Since is simply a shorthand for , such a presumption implies that Aristotle’s particularisation holds over the natural numbers under any finitarily sound interpretation of PA.

To see that (as Brouwer steadfastly held) this may not always be the case, interpret as ^{[15]}:

There is an algorithm that decides as `true’ for any given numeral .

In such case, if is provable in PA, then we can only conclude that:

There is an algorithm that, for any given numeral , decides that it is not the case that there is an algorithm that, for any given numeral , decides as `true’.

We cannot, however, conclude—as we can in a Bounded Arithmetic—that:

There is an algorithm that, for any given numeral , decides that there is an algorithm that, for some numeral , decides as `true’.

*Reason:* may be a Halting-type formula for some numeral .

This could be the case if were PA-*un*provable, but PA-provable for any given numeral .

Presumably it is the belief that any finitarily sound interpretation of PA requires Aristotle’s particularisation to hold in , and the recognition that the latter does not admit linking provability to computability in PA, which has led to considering the effect of bounding quantification in PA.

However, as we have seen in the preceding sections, we are able to link provability to computability through the Provability Theorem for PA by recognising precisely that, to the contrary, any interpretation of PA which requires Aristotle’s particularisation to hold in cannot be finitarily sound!

The postulation of an unspecified bound in a Bounded Arithmetic in order to arrive at a provability-computability link thus appears dispensible.

The question then arises:

** Does `weakening’ the PA Induction Axiom Schema yield any computational advantage?**

Now, Buss considers a bounded arithmetic which is, essentially, PA with the following `weakened’ Induction Axiom Schema, PIND ^{[16]}:

However, PIND can be expressed in first-order Peano Arithmetic PA as follows:

.

Moreover, the above is a particular case of PIND():

.

Now we have the PA theorem:

It follows that the following is also a PA theorem:

In other words, for any numeral , PIND() is equivalent in PA to the standard Induction Axiom of PA!

Thus, the Provability Theorem for PA suggests that all arguments and conclusions of a Bounded Arithmetic can be reflected in PA without any loss of generality.

**References**

**Br93** Selmer Bringsjord 1993. *The Narrational Case Against Church’s Thesis.* Easter APA meetings, Atlanta.

**Br08** L. E. J. Brouwer. 1908. *The Unreliability of the Logical Principles.* English translation in A. Heyting, Ed. *L. E. J. Brouwer: Collected Works 1: Philosophy and Foundations of Mathematics.* Amsterdam: North Holland / New York: American Elsevier (1975): pp.107-111.

**Bu97** Samuel R. Buss. 1997. *Bounded Arithmetic and Propositional Proof Complexity.* In *Logic of Computation.* pp.67-122. Ed. H. Schwichtenberg. Springer-Verlag, Berlin.

**CCS01** Cristian S. Calude, Elena Calude and Solomon Marcus. 2001. *Passages of Proof.* Workshop, Annual Conference of the Australasian Association of Philosophy (New Zealand Division), Auckland. Archived at: http://arxiv.org/pdf/math/0305213.pdf. Also in EATCS Bulletin, Number 84, October 2004, viii+258 pp.

**Da82** Martin Davis. 1958. *Computability and Unsolvability.* 1982 ed. Dover Publications, Inc., New York.

**EC89** Richard L. Epstein, Walter A. Carnielli. 1989. *Computability: Computable Functions, Logic, and the Foundations of Mathematics.* Wadsworth & Brooks, California.

**Go31** Kurt Gödel. 1931. *On formally undecidable propositions of Principia Mathematica and related systems I.* Translated by Elliott Mendelson. In M. Davis (ed.). 1965. *The Undecidable.* Raven Press, New York.

**HA28** David Hilbert & Wilhelm Ackermann. 1928. *Principles of Mathematical Logic.* Translation of the second edition of the *Grundzüge Der Theoretischen Logik.* 1928. Springer, Berlin. 1950. Chelsea Publishing Company, New York.

**He04** Catherine Christer-Hennix. 2004. *Some remarks on Finitistic Model Theory, Ultra-Intuitionism and the main problem of the Foundation of Mathematics.* ILLC Seminar, 2nd April 2004, Amsterdam.

**Hi25** David Hilbert. 1925. *On the Infinite.* Text of an address delivered in Münster on 4th June 1925 at a meeting of the Westphalian Mathematical Society. In Jean van Heijenoort. 1967.Ed. *From Frege to Gödel: A source book in Mathematical Logic, 1878 – 1931.* Harvard University Press, Cambridge, Massachusetts.

**Ku62** Thomas S. Kuhn. 1962. *The structure of Scientific Revolutions.* 2nd Ed. 1970. University of Chicago Press, Chicago.

**Me90** Elliott Mendelson. 1990. *Second Thoughts About Church’s Thesis and Mathematical Proofs.* In *Journal of Philosophy* 87.5.

**Pa71** Rohit Parikh. 1971. *Existence and Feasibility in Arithmetic.* In *The Journal of Symbolic Logic,>i> Vol.36, No. 3 (Sep., 1971), pp. 494-508.*

**Rg87** Hartley Rogers Jr. 1987. *Theory of Recursive Functions and Effective Computability.* MIT Press, Cambridge, Massachusetts.

**Ro36** J. Barkley Rosser. 1936. *Extensions of some Theorems of Gödel and Church.* In M. Davis (ed.). 1965. *The Undecidable.* Raven Press, New York. Reprinted from *The Journal of Symbolic Logic.* Vol.1. pp.87-91.

**Si08** Wilfrid Sieg. 2008. *On Computability* in *Handbook of the Philosophy of Science. Philosophy of Mathematics.* pp.525-621. Volume Editor: Andrew Irvine. General Editors: Dov M. Gabbay, Paul Thagard and John Woods. Elsevier BV. 2008.

**WG03** Peter Wegner and Dina Goldin. 2003. *Computation Beyond Turing Machines.* Communications of the ACM, 46 (4) 2003.

**Notes**

Return to 1: Gödel refers to this formula only by its Gödel number (Go31, p.25(12)).

Return to 2: Gödel’s immediate aim in Go31 was to show that is not P-provable; by Generalisation it follows, however, that is also not P-provable.

Return to 3: Gödel refers to this formula only by its Gödel number (Go31, p.25, eqn.12).

Return to 4: Go31, p.26(2): “ holds”.

Return to 5: This conclusion is contrary to accepted dogma. See, for instance, Davis’ remarks in Da82, p.129(iii) that:

“… there is no equivocation. Either an adequate arithmetical logic is -inconsistent (in which case it is possible to prove false statements within it) or it has an unsolvable decision problem and is subject to the limitations of Gödel’s incompleteness theorem”.

Return to 6: Go31, p.26(2).

Return to 7: I note that finitists of all hues—ranging from Brouwer Br08 to Alexander Yessenin-Volpin He04—have persistently questioned the finitary soundness of the `standard’ interpretation .

Return to 8: See Hi25, p.382; HA28, p.48; Be59, pp.178 \& 218.

Return to 9: In the sense of being intuitively obvious. See, for instance, Da82, p.xxiv; Rg87, p.308 (1)-(4); EC89, p.174 (4); BBJ03, p.102.

Return to 10: For instance Rosser’s construction of an undecidable arithmetical proposition in PA (see Ro36)—which does not explicitly assume that PA is -consistent—implicitly presumes that Aristotle’s particularisation holds over .

Return to 11: Bu97.

Return to 12: See also Pa71.

Return to 13: See Bu97.

Return to 14: We suspect the only one.

Return to 15: We have seen in the earlier sections that such an interpretation is finitarily sound.

Return to 16: Where denotes the largest natural number lower bound of the rational .

## Recent comments