“If I have seen a little further it is by standing on the shoulders of Giants”

Prior to Isaac Newton’s tribute (above) to Rene Descartes and Robert Hooke in a letter to the latter, it was reportedly the 12th century theologian and author John of Salisbury who was recorded as having used an even earlier version of this humbling admission—in a treatise on logic called Metalogicon, written in Latin in 1159, the gist of which is translatable as:

“Bernard of Chartres used to say that we are like dwarfs on the shoulders of giants, so that we can see more than they, and things at a greater distance, not by virtue of any sharpness of sight on our part, or any physical distinction, but because we are carried high and raised up by their giant size.

(Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris insidentes, ut possimus plura eis et remotiora videre, non utique proprii visus acumine, aut eminentia corporis, sed quia in altum subvenimur et extollimur magnitudine gigantea.)”

Contrary to a contemporary interpretation of the remark:

\bullet ‘standing on the shoulders of Giants’

as describing:

\bulletbuilding on previous discoveries“,

it seems to me that what Bernard of Chartres apparently intended was to suggest that it doesn’t necessarily take a genius to see farther; only someone both humble and willing to:

\bullet first, clamber onto the shoulders of a giant and have the self-belief to see things at first-hand as they appear from a higher perspective (achieved more by the nature of height—and the curvature of our immediate space as implicit in such an analogy—than by the nature of genius); and,

\bullet second, avoid trying to see things first through the eyes of the giant upon whose shoulders one stands (for the giant might indeed be a vision-blinding genius)!

It was this latter lesson that I was incidentally taught by—and one of the few that I learnt (probably far too well for better or worse) from—one of my Giants, the late Professor Manohar S. Huzurbazaar, in my final year of graduation in 1964.

The occasion: I protested that the axiom of infinity (in the set theory course that he had just begun to teach us) was not self-evident to me, as (he had explained in his introductory lecture) an axiom should seem if a formal theory were to make any kind of coherent sense under interpretation.

Whilst clarifying that his actual instruction to us had not been that an axiom should necessarily ‘seem’ self-evident, but only that it should ‘be treated’ as self-evident, Professor Huzurbazar further agreed that the set-theoretical axiom of infinity was not really as self-evident as an axiom ideally ought to seem in order to be treated as self-evident.

To my natural response asking him if it seemed at all self-evident to him, he replied in the negative; adding, however, that he believed it to be ‘true’ despite its lack of an unarguable element of ‘self-evidence’.

It was his remarkably candid response to my incredulous—and youthfully indiscreet—query as to how an unimpeachably objective person such as he (which was his defining characteristic) could hold such a subjective belief that has shaped my thinking ever since.

He said that he had ‘had’ to believe the axiom to be ‘true’, since he could not teach us what he did with ‘conviction’ if he did not have such faith!

Although I did not grasp it then, over the years I came to the realisation that committing to such a belief was the price he had willingly paid for a responsibility that he had recognised—and accepted—consciously at a very early age in his life (when he was tutoring his school going nephew, the renowned physicist Jayant V. Narlikar):

Nature had endowed him with the rare gift shared by great teachers—the capacity to reach out to, and inspire, students to learn beyond their instruction!

It was a responsibility that he bore unflinchingly and uncompromisingly, eventually becoming one of the most respected and sought after teachers (of his times in India) of Modern Algebra (now Category Theory), Set Theory and Analysis at both the graduate and post-graduate levels.

At the time, however, Professor Huzurbazar pointedly stressed that his belief should not influence me into believing the axiom to be true, nor into holding it as self-evident.

His words—spoken softly as was his wont—were:

“Challenge it”.

Although I chose not to follow an academic career, he never faltered in encouraging me to question the accepted paradigms of the day when I shared the direction of my reading and thinking (particularly on Logic and the Foundations of Mathematics) with him on the few occasions that I met him over the next twenty years.

Moreover, even if the desired self-evident nature of the most fundamental axioms of mathematics (those of first-order Peano Arithmetic and Computability Theory) were to be shown as formally inconsistent with a belief in the ‘self-evident’ truth of the axiom of infinity (a goal that continues to motivate me), I believe that the shades of Professor Huzurbazaar would feel more liberated than bruised by the ‘fall’.

Advertisements